加菲尔德的勾股定理证明
Garfield's Proof of the Pythagorean Theorem

原始链接: https://en.wikipedia.org/wiki/Garfield%27s_proof_of_the_Pythagorean_theorem

詹姆斯·A·加菲尔德,美国第20任总统,为数学贡献了一个原创证明——勾股定理的证明,发表于1876年,当时他正担任国会议员。他是唯一一位做到这一点的美国总统。 加菲尔德的证明,数学家威廉·邓纳姆认为“非常巧妙”,利用了一种几何方法。它使用一个直角三角形和一个全等三角形构造一个梯形,巧妙地利用了它们之间的关系。通过以两种不同的方式计算这个梯形的面积——使用梯形公式和求其内部三角形的面积之和——加菲尔德得出了方程 a² + b² = c²,从而证明了该定理。 他的证明被认为是370个已知证明中的第231个,展示了对几何原理的非平凡理解。不幸的是,加菲尔德在1881年成为总统后不久去世了。

一个黑客新闻的讨论强调了一个特别优雅的勾股定理证明,通常被认为是爱因斯坦的。该证明依赖于将一个直角三角形分成两个较小的相似直角三角形,方法是从直角顶点向斜边作垂线。 评论者WCSTombs称赞这个证明简单直观。它利用了面积随相似比的平方变化的原理。通过展示较小三角形的面积与原始三角形的关系,该证明直接建立了直角边平方和等于斜边平方的关系。 虽然存在数千个证明,但这个证明因易于理解和记忆而备受青睐。还提供了一个指向该证明更多信息的链接。
相关文章

原文

From Wikipedia, the free encyclopedia

1876 mathematical proof by the US president

Garfield in 1881

Garfield's proof of the Pythagorean theorem is an original proof of the Pythagorean theorem discovered by James A. Garfield (November 19, 1831 – September 19, 1881), the 20th president of the United States. The proof appeared in print in the New-England Journal of Education (Vol. 3, No.14, April 1, 1876).[1][2] At the time of the publication of the proof Garfield was a congressman from Ohio. He assumed the office of President on March 4, 1881, and served in that position until his death on September 19, 1881, having succumbed to injuries sustained when he was shot in an assassination in July.[3] Garfield is thus far the only President of the United States to have contributed anything original to mathematics. The proof is nontrivial and, according to the historian of mathematics William Dunham, "Garfield's is really a very clever proof."[4] The proof appears as the 231st proof in The Pythagorean Proposition, a compendium of 370 different proofs of the Pythagorean theorem.[5]

Diagram to explain Garfield's proof of the Pythagorean theorem

In the figure, A B C {\displaystyle ABC} is a right-angled triangle with right angle at C {\displaystyle C} . The side-lengths of the triangle are a , b , c {\displaystyle a,b,c} . Pythagorean theorem asserts that c 2 = a 2 + b 2 {\displaystyle c^{2}=a^{2}+b^{2}} .

To prove the theorem, Garfield drew a line through B {\displaystyle B} perpendicular to A B {\displaystyle AB} and on this line chose a point D {\displaystyle D} such that B D = B A {\displaystyle BD=BA} . Then, from D {\displaystyle D} he dropped a perpendicular D E {\displaystyle DE} upon the extended line C B {\displaystyle CB} . From the figure, one can easily see that the triangles A B C {\displaystyle ABC} and B D E {\displaystyle BDE} are congruent. Since A C {\displaystyle AC} and D E {\displaystyle DE} are both perpendicular to C E {\displaystyle CE} , they are parallel and so the quadrilateral A C E D {\displaystyle ACED} is a trapezoid. The theorem is proved by computing the area of this trapezoid in two different ways.

area of trapezoid  A C E D = height × average of parallel sides = C E × 1 2 ( A C + D E ) = ( a + b ) × 1 2 ( a + b ) {\displaystyle {\begin{aligned}{\text{area of trapezoid }}ACED&={\text{height}}\times {\text{average of parallel sides}}\\&=CE\times {\tfrac {1}{2}}(AC+DE)=(a+b)\times {\tfrac {1}{2}}(a+b)\end{aligned}}} .
area of trapezoid  A C E D = area of  Δ A C B + area of  Δ A B D + area of  Δ B D E = 1 2 ( a × b ) + 1 2 ( c × c ) + 1 2 ( a × b ) {\displaystyle {\begin{aligned}{\text{area of trapezoid }}ACED&={\text{area of }}\Delta ACB+{\text{area of }}\Delta ABD+{\text{area of }}\Delta BDE\\&={\tfrac {1}{2}}(a\times b)+{\tfrac {1}{2}}(c\times c)+{\tfrac {1}{2}}(a\times b)\end{aligned}}}

From these one gets

( a + b ) × 1 2 ( a + b ) = 1 2 ( a × b ) + 1 2 ( c × c ) + 1 2 ( a × b ) {\displaystyle (a+b)\times {\tfrac {1}{2}}(a+b)={\tfrac {1}{2}}(a\times b)+{\tfrac {1}{2}}(c\times c)+{\tfrac {1}{2}}(a\times b)}

which on simplification yields

a 2 + b 2 = c 2 {\displaystyle a^{2}+b^{2}=c^{2}}
联系我们 contact @ memedata.com