停止提示。让AI来面试你以构建规格。
Stop prompting. Let the AI interview you to build specs

原始链接: https://www.ideaforge.chat/

## LexiQuest:智能词汇学习 - 摘要 LexiQuest 是一款移动应用程序,旨在帮助学生通过智能词汇管理准备重要的英语考试(雅思、托福、研究生入学考试)。它旨在通过整合词汇捕获、人工智能分析、间隔重复和游戏化机制,形成一个持续的学习循环,从而简化学习过程。 **目标用户**是18-30岁的大学生和专业人士,他们需要高效地记录和记忆在学习中遇到的新词汇。MVP 专注于核心功能:快速登录、访问官方词汇列表、多模式词汇输入(手动、OCR、剪贴板)、人工智能分析提供释义、例句和助记符、间隔重复复习引擎、游戏化(等级、徽章、连续登录)、以及云同步。 **关键成功指标**包括次日留存率 >40%、平均每日使用时长 >15分钟、每日添加 >5个新词、以及7天任务完成率 >25%。该应用程序的技术栈包括 Uni-app/Vue 3(前端)、Node.js/NestJS(后端)、PostgreSQL/Redis(数据库/缓存),以及 OpenAI/Claude 用于人工智能,并侧重于通过 JWT 身份验证和数据加密来保障安全性。初始目标是 10,000 名种子用户,月活跃用户留存率达到 40%。

## IdeaForge:AI驱动的需求规格生成 一个新工具[IdeaForge](https://ideaforge.chat) 旨在为非技术用户弥合想法与可用代码之间的差距。开发者本人并非程序员,发现现有的AI编码工具由于难以表达精确的需求而效果不佳。 IdeaForge 不依赖于提示词,而是*访谈* 用户,提出详细问题以完善逻辑、数据库模式和边缘情况——本质上充当虚拟的技术联合创始人。然后,它生成一个结构化的 Markdown 规格,可与 Cursor 或 Codex 等工具一起使用。 一些评论者分享了类似的工作流程,利用定制的 GPT 来实现相同的目标:在编码*之前*进行迭代的需求收集。人们对隐私表示担忧,因为该网站目前缺乏隐私政策或“关于”页面。开发者正在寻求经验丰富的工程师对生成的规格的质量和可用性提供反馈。
相关文章

原文

1. Project Overview

1.1 Core Value

LexiQuest is an intelligent vocabulary management and memorization system designed for learners preparing for high‑stakes English exams such as IELTS, TOEFL, and postgraduate entrance exams. It integrates efficient word capture + AI analysis + science‑based review + gamified motivation into a continuous learning loop.

1.2 Target Users

  • User profile:

    • Age: 18–30
    • Identity: University students, working professionals preparing to study abroad, postgraduate English exam candidates
    • Traits: Frequently exposed to textbooks, past exam papers, and English articles, with a strong need to “record unknown words as they appear”
  • Usage scenarios:

    1. Fragmented memorization: On the subway/bus, open the app and complete today’s review task in 5–10 minutes.
    2. Batch input after reading: After reading practice tests or articles, batch import unknown words via photo capture and generate AI analysis immediately.
    3. Pre‑exam sprint: Set a daily word target and quickly drill high‑frequency core vocabulary.
  • Estimated user scale: For the MVP phase, target 10,000 seed users; within 3 months, retain 40% monthly active users.

1.3 MVP Scope

  • Included features:

    1. Quick login (WeChat one‑tap login / anonymous quick start)
    2. Official vocabulary book subscriptions (IELTS/TOEFL/Postgraduate exams)
    3. Multi‑modal word input (manual entry, photo OCR, clipboard import)
    4. AI word analysis (phonetics, definitions, exam‑style example sentences, mnemonics)
    5. Ebbinghaus‑based spaced repetition engine
    6. Test‑driven review (spelling, multiple choice, listening comprehension)
    7. Gamification system (levels, badges, streak calendar)
    8. Cloud sync (consistent data across devices)
  • Excluded features:

    • Social features
    • Offline mode
    • Pronunciation scoring
  • Success metrics:

    • Next‑day retention rate > 40%
    • Average daily usage time per user > 15 minutes
    • Average number of new words added per user per day > 5
    • 7‑day task completion rate > 25%

2. Detailed Feature Requirements

2.1 Core Feature: Intelligent Word Input System

  • Goal: Minimize the cost of “recording new words” while ensuring that user input and AI output remain controllable and high quality.

  • User flow:

    1. Tap the “+” button on the home screen.
    2. Choose an input method:
      • Manual input: Enter the word; the system provides real‑time suggestions (supports fuzzy matching).
      • Photo recognition: Take a photo of test papers or reading materials; OCR automatically detects a list of words.
      • Clipboard import: Detect English words or phrases in the clipboard and prompt “One‑tap import.”
    3. Enter a preview page with the AI‑generated word card.
    4. The user can choose “Add to vocabulary notebook” or “Ignore.”
  • Input and output definitions:

    • Input: word (string), image (image), clipboard_text (string)
    • Output: A complete word entry object containing:
      • spelling (word spelling)
      • phonetic (phonetic transcription)
      • pos (part of speech)
      • definitions (list of definitions in Chinese)
      • examples (exam‑style example sentences + translations)
      • mnemonic (mnemonic phrase)
      • collocations (common collocations, at least one)
  • Boundary conditions:

    1. Spelling errors: The system suggests “Did you mean ___?” and allows the user to confirm.
    2. Multi‑word phrases: If a phrase is recognized, it is treated as a phrase entry; if it can’t be parsed, show “This phrase is not yet supported.”
    3. OCR failure: Show “Image could not be recognized” and provide a manual edit entry point.
  • Error handling:

    • AI analysis failure: Return “basic word data (POS/definitions)” only; example sentences and mnemonics are left empty, with a hint “You can retry generation later.”
    • Network errors: Show “Network unavailable, analysis temporarily not possible” and cache the pending analysis list.
  • UI/UX requirements:

    • OCR screen shows a scanning animation; recognized results can be manually selected.
    • The preview card provides an “Edit” entry so users can modify definitions or example sentences.

2.2 Core Feature: AI Automated Analysis Engine


2.3 Core Feature: Test‑Driven Review


2.4 Supporting Feature: Gamified Motivation

  • Streak calendar:

    • Completing the day’s review task marks a daily check‑in.
    • Consecutive check‑ins ≥ 7 days grant extra XP (+50).
  • Level system:

    • XP is earned from correct reviews and consecutive streaks.
    • Every 100 words mastered increases the user’s level by 1.
  • Badge system:

    • Early Bird: Review completed before 8 a.m. for 7 consecutive days.
    • Spelling Master: 100 consecutive spelling questions answered correctly.
    • Sprint Expert: ≥ 100 new words added within 7 days.
  • Visual feedback:

    • When a review succeeds, show an “XP gained” animation.
    • When leveling up, play a level‑up animation.

3. Technical Architecture

3.1 Tech Stack

  • Frontend: Uni‑app + Vue 3
  • Backend: Node.js (NestJS)
  • Database: PostgreSQL
  • Cache: Redis
  • AI Services: OpenAI GPT‑4o‑mini / Claude 3 Haiku
  • OCR Services: TextIn / Baidu OCR

3.2 System Architecture

  1. Access layer: Nginx load balancing, SSL termination
  2. Business logic layer:
    • WordService: Word management and AI analysis
    • StudyService: Review plan generation and algorithm calculation
    • GameService: XP, levels, badges
  3. Data layer: PostgreSQL + Redis

3.3 Security Considerations

  • JWT authentication
  • AES encryption for sensitive data
  • Rate limiting to prevent abuse
  • Unified de‑identification and logging for OCR images and AI input content

4. Data Model Design

4.1 Core Entities

User

FieldTypeRequiredDescription
idUUIDYesPrimary key
nicknameStringNoNickname
avatarStringNoAvatar URL
login_typeEnumYeswechat / anonymous
created_atTimestampYesCreation time

Word

FieldTypeRequiredDescription
idUUIDYesPrimary key
spellingStringYesUnique index
phoneticStringNoPhonetic transcription
definitionsJSONBYesPart‑of‑speech + definitions
examplesJSONBNoExample sentences + translations
mnemonicTextNoMnemonic
collocationsJSONBNoCommon collocations

UserWord

FieldTypeRequiredDefaultDescription
idUUIDYes-Primary key
user_idUUIDYes-User ID
word_idUUIDYes-Word ID
statusEnumYeslearninglearning / mastered / archived
next_reviewTimestampYesnow()Next review time
intervalIntYes0Review interval stage
ease_factorFloatYes2.5Ease factor
wrong_countIntYes0Number of wrong answers

ReviewLog

FieldTypeRequiredDescription
idUUIDYesPrimary key
user_word_idUUIDYesAssociated UserWord
test_typeEnumYesspelling/choice/listen
qualityIntYes0–3
created_atTimestampYesReview time

5. API Design

5.1 Get/Generate Word Analysis

  • Path: /api/v1/words/parse
  • Method: POST
  • Request:
{
  "word": "meticulous",
  "target_exam": "IELTS",
  "example_count": 2
}
{
  "code": 200,
  "data": {
    "spelling": "meticulous",
    "phonetic": "/məˈtɪkjələs/",
    "definitions": [{"pos": "adj", "meaning": "meticulous; extremely careful"}],
    "examples": [
      {
        "en": "He was meticulous in his preparation.",
        "cn": "He prepared with meticulous care."
      }
    ],
    "mnemonic": "From the Latin root 'meticulōsus' meaning 'fearful' or 'overly careful' → meticulous, extremely careful.",
    "collocations": ["meticulous planning"]
  }
}
  • Error codes:
    • 400: word parameter missing
    • 422: Unable to parse
    • 500: AI service failure

5.2 Add to Vocabulary Notebook

  • Path: /api/v1/words/add
  • Method: POST
  • Request:
{
  "word_id": "uuid",
  "user_id": "uuid"
}
{
  "code": 200,
  "data": {
    "user_word_id": "uuid",
    "next_review": "2023-10-27T08:00:00Z"
  }
}

5.3 Get Today’s Review List

  • Path: /api/v1/study/today
  • Method: GET
  • Response:
{
  "code": 200,
  "data": {
    "total": 20,
    "words": [
      {
        "user_word_id": "uuid",
        "spelling": "meticulous",
        "definition": "meticulous; extremely careful"
      }
    ]
  }
}

5.4 Submit Review Result

  • Path: /api/v1/study/review
  • Method: POST
  • Request:
{
  "user_word_id": "uuid",
  "quality": 3,
  "test_type": "spelling"
}
{
  "code": 200,
  "data": {
    "next_review": "2023-10-27T08:00:00Z",
    "exp_gained": 15,
    "level_up": false
  }
}

6. User Interface Design

6.1 Page Structure

  1. Home: Shows level progress, streak status, and today’s review workload.
  2. Vocabulary list: Supports search and categorization.
  3. Review mode: Immersive test‑style interface.
  4. Profile: Badge wall and learning statistics.

6.2 Design Guidelines

  • Primary color: #FF8C00
  • Secondary color: #1A237E
  • Fonts: Inter + PingFang SC

7. Detailed User Flows

7.1 Daily Review Flow

  1. Open the app; the home screen shows “20 words to review today.”
  2. Tap “Start review.”
  3. The system shows the Chinese meaning; the user types the spelling.
  4. If the spelling is correct: Play pronunciation, grant +5 XP, and move to the next word.
  5. If the spelling is incorrect: Show the correct spelling and require the user to copy it once.
  6. After all words are completed, show a daily report and rewards.

8. Non‑Functional Requirements

8.1 Performance

  • AI analysis: Single‑word analysis < 3 seconds
  • Home screen first paint < 1.5 seconds

8.2 Reliability & Availability

  • Daily data backups
  • Availability 99.5%

9. Testing Strategy

  • Unit tests: Algorithm boundary conditions
  • Integration tests: OCR → AI → DB data flow
  • End‑to‑end tests: Simulate a full review flow using Appium
  • Performance tests: 500 concurrent users reviewing simultaneously
联系我们 contact @ memedata.com