边缘人工智能入门
Edge AI for Beginners

原始链接: https://github.com/microsoft/edgeai-for-beginners

## 边缘AI入门:概要 本课程全面介绍边缘AI,弥合了强大AI与在手机、物联网传感器和PC等设备上实际部署之间的差距。它专注于在*本地*运行AI——无需依赖云端——以提高隐私性、降低延迟和降低成本。 课程内容涵盖针对边缘设备优化的小型语言模型(SLM),例如Phi-4和Gemma,并探讨硬件感知优化技术。主要主题包括SLM基础、部署策略、模型优化工具(Llama.cpp、Olive、OpenVINO)和生产运维(SLMOps)。高级模块深入研究AI代理和函数调用。 本课程采用实践方法,包含50多个示例和10个使用Foundry Local工具包构建的综合演示,包括聊天应用程序、RAG管道和多代理系统。它为所有级别提供学习路径,从入门级(7-9小时)到专家级(8-10小时),总计36-45小时。 通过GitHub Actions提供多语言支持。加入Azure AI Foundry Discord以获得支持和协作。本课程非常适合机器学习工程师、物联网开发者以及任何希望构建下一代智能、本地优先应用程序的人员。

黑客新闻 新 | 过去 | 评论 | 提问 | 展示 | 招聘 | 提交 登录 边缘人工智能初学者 (github.com/microsoft) 17 分,bakigul 发表于 48 分钟前 | 隐藏 | 过去 | 收藏 | 2 条评论 bn-l 发表于 20 分钟前 | 下一个 [–] 他们真的拥抱人工智能了!我甚至能感觉到它们无处不在。在我之上。在我之下。回复 alansaber 发表于 20 分钟前 | 上一个 [–] 很高兴看到大型公司对 SLM 的支持,尽管仅用于推理。回复 考虑申请 YC 的 2026 年冬季批次!申请截止日期为 11 月 10 日 指南 | 常见问题 | 列表 | API | 安全 | 法律 | 申请 YC | 联系 搜索:
相关文章

原文

Course cover image

GitHub contributors GitHub issues GitHub pull-requests PRs Welcome

GitHub watchers GitHub forks GitHub stars

Microsoft Azure AI Foundry Discord

Follow these steps to get started using these resources:

  1. Fork the Repository: Click GitHub forks
  2. Clone the Repository: git clone https://github.com/microsoft/edgeai-for-beginners.git
  3. Join The Azure AI Foundry Discord and meet experts and fellow developers

🌐 Multi-Language Support

Supported via GitHub Action (Automated & Always Up-to-Date)

Arabic | Bengali | Bulgarian | Burmese (Myanmar) | Chinese (Simplified) | Chinese (Traditional, Hong Kong) | Chinese (Traditional, Macau) | Chinese (Traditional, Taiwan) | Croatian | Czech | Danish | Dutch | Estonian | Finnish | French | German | Greek | Hebrew | Hindi | Hungarian | Indonesian | Italian | Japanese | Korean | Lithuanian | Malay | Marathi | Nepali | Norwegian | Persian (Farsi) | Polish | Portuguese (Brazil) | Portuguese (Portugal) | Punjabi (Gurmukhi) | Romanian | Russian | Serbian (Cyrillic) | Slovak | Slovenian | Spanish | Swahili | Swedish | Tagalog (Filipino) | Tamil | Thai | Turkish | Ukrainian | Urdu | Vietnamese

If you wish to have additional translations languages supported are listed here

Welcome to EdgeAI for Beginners – your comprehensive journey into the transformative world of Edge Artificial Intelligence. This course bridges the gap between powerful AI capabilities and practical, real-world deployment on edge devices, empowering you to harness AI's potential directly where data is generated and decisions need to be made.

This course takes you from fundamental concepts to production-ready implementations, covering:

  • Small Language Models (SLMs) optimized for edge deployment
  • Hardware-aware optimization across diverse platforms
  • Real-time inference with privacy-preserving capabilities
  • Production deployment strategies for enterprise applications

Edge AI represents a paradigm shift that addresses critical modern challenges:

  • Privacy & Security: Process sensitive data locally without cloud exposure
  • Real-time Performance: Eliminate network latency for time-critical applications
  • Cost Efficiency: Reduce bandwidth and cloud computing expenses
  • Resilient Operations: Maintain functionality during network outages
  • Regulatory Compliance: Meet data sovereignty requirements

Edge AI refers to running AI algorithms and language models locally on hardware, close to where data is generated without relying on cloud resources for inference. It reduces latency, enhances privacy, and enables real-time decision-making.

  • On-device inference: AI models run on edge devices (phones, routers, microcontrollers, industrial PCs)
  • Offline capability: Functions without persistent internet connectivity
  • Low latency: Immediate responses suited for real-time systems
  • Data sovereignty: Keeps sensitive data local, improving security and compliance

Small Language Models (SLMs)

SLMs like Phi-4, Mistral-7B, and Gemma are optimized versions of larger LLMs—trained or distilled for:

  • Reduced memory footprint: Efficient use of limited edge device memory
  • Lower compute demand: Optimized for CPU and edge GPU performance
  • Faster startup times: Quick initialization for responsive applications

They unlock powerful NLP capabilities while meeting the constraints of:

  • Embedded systems: IoT devices and industrial controllers
  • Mobile devices: Smartphones and tablets with offline capabilities
  • IoT Devices: Sensors and smart devices with limited resources
  • Edge servers: Local processing units with limited GPU resources
  • Personal Computers: Desktop and laptop deployment scenarios

Course Modules & Navigation

Module Topic Focus Area Key Content Level Duration
📖 00 Introduction to EdgeAI Foundation & Context EdgeAI Overview • Industry Applications • SLM Introduction • Learning Objectives Beginner 1-2 hrs
📚 01 EdgeAI Fundamentals Cloud vs Edge AI comparison EdgeAI Fundamentals • Real World Case Studies • Implementation Guide • Edge Deployment Beginner 3-4 hrs
🧠 02 SLM Model Foundations Model families & architecture Phi Family • Qwen Family • Gemma Family • BitNET • μModel • Phi-Silica Beginner 4-5 hrs
🚀 03 SLM Deployment Practice Local & cloud deployment Advanced Learning • Local Environment • Cloud Deployment Intermediate 4-5 hrs
⚙️ 04 Model Optimization Toolkit Cross-platform optimization Introduction • Llama.cpp • Microsoft Olive • OpenVINO • Apple MLX • Workflow Synthesis Intermediate 5-6 hrs
🔧 05 SLMOps Production Production operations SLMOps Introduction • Model Distillation • Fine-tuning • Production Deployment Advanced 5-6 hrs
🤖 06 AI Agents & Function Calling Agent frameworks & MCP Agent Introduction • Function Calling • Model Context Protocol Advanced 4-5 hrs
💻 07 Platform Implementation Cross-platform samples AI Toolkit • Foundry Local • Windows Development Advanced 3-4 hrs
🏭 08 Foundry Local Toolkit Production-ready samples Sample applications (see details below) Expert 8-10 hrs

🏭 Module 08: Sample Applications

🎓 Workshop: Hands-On Learning Path

Comprehensive hands-on workshop materials with production-ready implementations:

  • Workshop Guide - Complete learning objectives, outcomes, and resource navigation
  • Python Samples (6 sessions) - Updated with best practices, error handling, and comprehensive documentation
  • Jupyter Notebooks (8 interactive) - Step-by-step tutorials with benchmarks and performance monitoring
  • Session Guides - Detailed markdown guides for each workshop session
  • Validation Tools - Scripts to verify code quality and run smoke tests

What You'll Build:

  • Local AI chat applications with streaming support
  • RAG pipelines with quality evaluation (RAGAS)
  • Multi-model benchmarking and comparison tools
  • Multi-agent orchestration systems
  • Intelligent model routing with task-based selection

📊 Learning Path Summary

  • Total Duration: 36-45 hours
  • Beginner Path: Modules 01-02 (7-9 hours)
  • Intermediate Path: Modules 03-04 (9-11 hours)
  • Advanced Path: Modules 05-07 (12-15 hours)
  • Expert Path: Module 08 (8-10 hours)
  • Edge AI Architecture: Design local-first AI systems with cloud integration
  • Model Optimization: Quantize and compress models for edge deployment (85% speed boost, 75% size reduction)
  • Multi-Platform Deployment: Windows, mobile, embedded, and cloud-edge hybrid systems
  • Production Operations: Monitoring, scaling, and maintaining edge AI in production

🏗️ Practical Projects

  • Foundry Local Chat Apps: Windows 11 native application with model switching
  • Multi-Agent Systems: Coordinator with specialist agents for complex workflows
  • RAG Applications: Local document processing with vector search
  • Model Routers: Intelligent selection between models based on task analysis
  • API Frameworks: Production-ready clients with streaming and health monitoring
  • Cross-Platform Tools: LangChain/Semantic Kernel integration patterns

🏢 Industry Applications

ManufacturingHealthcareAutonomous VehiclesSmart CitiesMobile Apps

Recommended Learning Path (20-30 hours total):

  1. 📖 Introduction (Introduction.md): EdgeAI foundation + industry context + learning framework
  2. 📚 Foundation (Modules 01-02): EdgeAI concepts + SLM model families
  3. ⚙️ Optimization (Modules 03-04): Deployment + quantization frameworks
  4. 🚀 Production (Modules 05-06): SLMOps + AI agents + function calling
  5. 💻 Implementation (Modules 07-08): Platform samples + Foundry Local toolkit

Each module includes theory, hands-on exercises, and production-ready code samples.

Technical Roles: EdgeAI Solutions Architect • ML Engineer (Edge) • IoT AI Developer • Mobile AI Developer

Industry Sectors: Manufacturing 4.0 • Healthcare Tech • Autonomous Systems • FinTech • Consumer Electronics

Portfolio Projects: Multi-agent systems • Production RAG apps • Cross-platform deployment • Performance optimization

edgeai-for-beginners/
├── 📖 introduction.md  # Foundation: EdgeAI Overview & Learning Framework
├── 📚 Module01-04/     # Fundamentals → SLMs → Deployment → Optimization  
├── 🔧 Module05-06/     # SLMOps → AI Agents → Function Calling
├── 💻 Module07/        # Platform Samples (VS Code, Windows, Jetson, Mobile)
├── 🏭 Module08/        # Foundry Local Toolkit + 10 Comprehensive Samples
│   ├── samples/01-06/  # Foundation: REST, SDK, RAG, Agents, Routing
│   └── samples/07-10/  # Advanced: API Client, Windows App, Enterprise Agents, Tools
├── 🌐 translations/    # Multi-language support (8+ languages)
└── 📋 STUDY_GUIDE.md   # Structured learning paths & time allocation

Progressive Learning: Theory → Practice → Production deployment
Real Case Studies: Microsoft, Japan Airlines, enterprise implementations
Hands-on Samples: 50+ examples, 10 comprehensive Foundry Local demos
Performance Focus: 85% speed improvements, 75% size reductions
Multi-Platform: Windows, mobile, embedded, cloud-edge hybrid
Production Ready: Monitoring, scaling, security, compliance frameworks

📖 Study Guide Available: Structured 20-hour learning path with time allocation guidance and self-assessment tools.


EdgeAI represents the future of AI deployment: local-first, privacy-preserving, and efficient. Master these skills to build the next generation of intelligent applications.

Our team produces other courses! Check out:

If you get stuck or have any questions about building AI apps, join:

Azure AI Foundry Discord

If you have product feedback or errors while building visit:

Azure AI Foundry Developer Forum

联系我们 contact @ memedata.com