Google 泰坦架构,助力人工智能拥有长期记忆
Google Titans architecture, helping AI have long-term memory

原始链接: https://research.google/blog/titans-miras-helping-ai-have-long-term-memory/

Transformer模型在序列处理方面表现出色,这得益于其“注意力”机制,但由于计算成本高昂,在处理非常长的序列时会遇到困难。最近的尝试,如Mamba-2,使用压缩技术,但会损失关键信息。 新的研究介绍了**Titans**,一种新颖的架构,以及其背后的理论框架**MIRAS**,提供了一种解决方案,它结合了循环神经网络的速度和Transformer的准确性。它们推进了“测试时记忆”——允许模型在*使用*过程中学习,通过优先处理和整合令人惊讶的新信息,而无需重新训练。 与压缩上下文的先前方法不同,MIRAS实现了实时适应。Titans在接收到数据时会主动更新其内部参数,立即将新细节整合到其知识库中。这种动态学习代表着人工智能模型朝着能够处理和理解极其漫长和复杂的序列迈出了重要一步。

Google Research 最近发布了关于“Titans”的细节,这是一种旨在为人工智能模型提供长期记忆的新架构。该研究通过 arXiv 公开提供([https://arxiv.org/abs/2501.00663](https://arxiv.org/abs/2501.00663) & [https://arxiv.org/pdf/2504.13173](https://arxiv.org/pdf/2504.13173)),专注于使人工智能能够在运行过程中持续学习和保留信息——本质上,是在“测试时”学习。 Hacker News 上的讨论强调了 Google 公开分享人工智能研究的承诺,评论员指出 Meta 和中国人工智能公司也越来越透明。一位用户将 Titans 比作 LoRA(低秩自适应),认为它可以作为一个持续自适应的层,可能“合并”回核心模型以实现长期保留,类似于人类在睡眠期间学习和巩固记忆的方式。 该研究旨在提高人工智能处理复杂、不断发展的任务的能力,这些任务需要持续的知识。
相关文章

原文

The Transformer architecture revolutionized sequence modeling with its introduction of attention, a mechanism by which models look back at earlier inputs to prioritize relevant input data. However, computational cost increases drastically with sequence length, which limits the ability to scale Transformer-based models to extremely long contexts, such as those required for full-document understanding or genomic analysis.

The research community explored various approaches for solutions, such as efficient linear recurrent neural networks (RNNs) and state space models (SSMs) like Mamba-2. These models offer fast, linear scaling by compressing context into a fixed-size. However, this fixed-size compression cannot adequately capture the rich information in very long sequences.

In two new papers, Titans and MIRAS, we introduce an architecture and theoretical blueprint that combine the speed of RNNs with the accuracy of transformers. Titans is the specific architecture (the tool), and MIRAS is the theoretical framework (the blueprint) for generalizing these approaches. Together, they advance the concept of test-time memorization, the ability of an AI model to maintain long-term memory by incorporating more powerful “surprise” metrics (i.e., unexpected pieces of information) while the model is running and without dedicated offline retraining.

The MIRAS framework, as demonstrated by Titans, introduces a meaningful shift toward real-time adaptation. Instead of compressing information into a static state, this architecture actively learns and updates its own parameters as data streams in. This crucial mechanism enables the model to incorporate new, specific details into its core knowledge instantly.

联系我们 contact @ memedata.com