基于随手拍摄的图像的鲁棒条件3D形状生成
Robust Conditional 3D Shape Generation from Casual Captures

原始链接: https://facebookresearch.github.io/ShapeR/

## ShapeR:从多视图进行准确的3D重建 虽然SAM 3D Objects擅长从单张图像生成3D形状,但在度量精度方面存在不足,并且需要用户输入,尤其是在复杂场景中。**ShapeR**通过利用**图像序列和多模态数据**(如SLAM点)来创建**度量准确且一致的3D重建**,从而解决了这些限制,并且是**自动的**。 与SAM 3D不同,ShapeR能够稳健地处理真实世界场景,**无需**用户交互。重要的是,它使用完全通过合成方式生成的数据进行训练。这与SAM 3D依赖大规模、标记的真实世界数据的做法形成对比。 这两种方法代表了不同的优势:SAM 3D优先考虑稳健的单视图推断,而ShapeR则侧重于多视图几何约束以实现准确的场景重建。作者建议**将两者结合**——使用ShapeR的输出来优化SAM 3D的结果——从而利用ShapeR的准确性和布局能力,以及SAM 3D的纹理和对真实世界的理解。

黑客新闻 新 | 过去 | 评论 | 提问 | 展示 | 招聘 | 提交 登录 鲁棒的条件3D形状生成,来自随意的捕捉 (facebookresearch.github.io) 3点 由 lastdong 2小时前 | 隐藏 | 过去 | 收藏 | 讨论 指南 | 常见问题 | 列表 | API | 安全 | 法律 | 申请YC | 联系 搜索:
相关文章

原文

SAM 3D Objects marks a significant improvement in shape generation, but it lacks metric accuracy and requires interaction. Since it can only exploit a single view, it can sometimes fail to preserve correct aspect ratios, relative scales, and object layouts in complex scenes such as shown in the example here.

ShapeR vs SAM3D Comparison

ShapeR solves this by leveraging image sequences and multimodal data (such as SLAM points). By integrating multiple posed views, ShapeR automatically produces metrically accurate and consistent reconstructions. Unlike interactive single-image methods, ShapeR robustly handles casually captured real-world scenes, generating high-quality metric shapes and arrangements without requiring user interaction.

Notably, ShapeR achieves this while trained entirely on synthetic data, whereas SAM 3D exploits large-scale labeled real image-to-3D data. This highlights two different axes of progress: where SAM 3D uses large-scale real data for robust single-view inference, ShapeR utilizes multi-view geometric constraints to achieve robust, metric scene reconstruction.

The two approaches can be combined. By conditioning the second stage of SAM 3D with the output of ShapeR, we can merge the best of both worlds: the metric accuracy and robust layout of ShapeR, and the textures and robust real-world priors of SAM 3D.

联系我们 contact @ memedata.com