This repository contains the core recommendation system powering the "For You" feed on X. It combines in-network content (from accounts you follow) with out-of-network content (discovered through ML-based retrieval) and ranks everything using a Grok-based transformer model.
Note: The transformer implementation is ported from the Grok-1 open source release by xAI, adapted for recommendation system use cases.
The For You feed algorithm retrieves, ranks, and filters posts from two sources:
- In-Network (Thunder): Posts from accounts you follow
- Out-of-Network (Phoenix Retrieval): Posts discovered from a global corpus
Both sources are combined and ranked together using Phoenix, a Grok-based transformer model that predicts engagement probabilities for each post. The final score is a weighted combination of these predicted engagements.
We have eliminated every single hand-engineered feature and most heuristics from the system. The Grok-based transformer does all the heavy lifting by understanding your engagement history (what you liked, replied to, shared, etc.) and using that to determine what content is relevant to you.
┌─────────────────────────────────────────────────────────────────────────────────────────────┐
│ FOR YOU FEED REQUEST │
└─────────────────────────────────────────────────────────────────────────────────────────────┘
│
▼
┌─────────────────────────────────────────────────────────────────────────────────────────────┐
│ HOME MIXER │
│ (Orchestration Layer) │
├─────────────────────────────────────────────────────────────────────────────────────────────┤
│ │
│ ┌─────────────────────────────────────────────────────────────────────────────────────┐ │
│ │ QUERY HYDRATION │ │
│ │ ┌──────────────────────────┐ ┌──────────────────────────────────────────────┐ │ │
│ │ │ User Action Sequence │ │ User Features │ │ │
│ │ │ (engagement history) │ │ (following list, preferences, etc.) │ │ │
│ │ └──────────────────────────┘ └──────────────────────────────────────────────┘ │ │
│ └─────────────────────────────────────────────────────────────────────────────────────┘ │
│ │ │
│ ▼ │
│ ┌─────────────────────────────────────────────────────────────────────────────────────┐ │
│ │ CANDIDATE SOURCES │ │
│ │ ┌─────────────────────────────┐ ┌────────────────────────────────┐ │ │
│ │ │ THUNDER │ │ PHOENIX RETRIEVAL │ │ │
│ │ │ (In-Network Posts) │ │ (Out-of-Network Posts) │ │ │
│ │ │ │ │ │ │ │
│ │ │ Posts from accounts │ │ ML-based similarity search │ │ │
│ │ │ you follow │ │ across global corpus │ │ │
│ │ └─────────────────────────────┘ └────────────────────────────────┘ │ │
│ └─────────────────────────────────────────────────────────────────────────────────────┘ │
│ │ │
│ ▼ │
│ ┌─────────────────────────────────────────────────────────────────────────────────────┐ │
│ │ HYDRATION │ │
│ │ Fetch additional data: core post metadata, author info, media entities, etc. │ │
│ └─────────────────────────────────────────────────────────────────────────────────────┘ │
│ │ │
│ ▼ │
│ ┌─────────────────────────────────────────────────────────────────────────────────────┐ │
│ │ FILTERING │ │
│ │ Remove: duplicates, old posts, self-posts, blocked authors, muted keywords, etc. │ │
│ └─────────────────────────────────────────────────────────────────────────────────────┘ │
│ │ │
│ ▼ │
│ ┌─────────────────────────────────────────────────────────────────────────────────────┐ │
│ │ SCORING │ │
│ │ ┌──────────────────────────┐ │ │
│ │ │ Phoenix Scorer │ Grok-based Transformer predicts: │ │
│ │ │ (ML Predictions) │ P(like), P(reply), P(repost), P(click)... │ │
│ │ └──────────────────────────┘ │ │
│ │ │ │ │
│ │ ▼ │ │
│ │ ┌──────────────────────────┐ │ │
│ │ │ Weighted Scorer │ Weighted Score = Σ (weight × P(action)) │ │
│ │ │ (Combine predictions) │ │ │
│ │ └──────────────────────────┘ │ │
│ │ │ │ │
│ │ ▼ │ │
│ │ ┌──────────────────────────┐ │ │
│ │ │ Author Diversity │ Attenuate repeated author scores │ │
│ │ │ Scorer │ to ensure feed diversity │ │
│ │ └──────────────────────────┘ │ │
│ └─────────────────────────────────────────────────────────────────────────────────────┘ │
│ │ │
│ ▼ │
│ ┌─────────────────────────────────────────────────────────────────────────────────────┐ │
│ │ SELECTION │ │
│ │ Sort by final score, select top K candidates │ │
│ └─────────────────────────────────────────────────────────────────────────────────────┘ │
│ │ │
│ ▼ │
│ ┌─────────────────────────────────────────────────────────────────────────────────────┐ │
│ │ FILTERING (Post-Selection) │ │
│ │ Visibility filtering (deleted/spam/violence/gore etc) │ │
│ └─────────────────────────────────────────────────────────────────────────────────────┘ │
│ │
└─────────────────────────────────────────────────────────────────────────────────────────────┘
│
▼
┌─────────────────────────────────────────────────────────────────────────────────────────────┐
│ RANKED FEED RESPONSE │
└─────────────────────────────────────────────────────────────────────────────────────────────┘
Location: home-mixer/
The orchestration layer that assembles the For You feed. It leverages the CandidatePipeline framework with the following stages:
| Stage | Description |
|---|---|
| Query Hydrators | Fetch user context (engagement history, following list) |
| Sources | Retrieve candidates from Thunder and Phoenix |
| Hydrators | Enrich candidates with additional data |
| Filters | Remove ineligible candidates |
| Scorers | Predict engagement and compute final scores |
| Selector | Sort by score and select top K |
| Post-Selection Filters | Final visibility and dedup checks |
| Side Effects | Cache request info for future use |
The server exposes a gRPC endpoint (ScoredPostsService) that returns ranked posts for a given user.
Location: thunder/
An in-memory post store and realtime ingestion pipeline that tracks recent posts from all users. It:
- Consumes post create/delete events from Kafka
- Maintains per-user stores for original posts, replies/reposts, and video posts
- Serves "in-network" post candidates from accounts the requesting user follows
- Automatically trims posts older than the retention period
Thunder enables sub-millisecond lookups for in-network content without hitting an external database.
Location: phoenix/
The ML component with two main functions:
Finds relevant out-of-network posts:
- User Tower: Encodes user features and engagement history into an embedding
- Candidate Tower: Encodes all posts into embeddings
- Similarity Search: Retrieves top-K posts via dot product similarity
Predicts engagement probabilities for each candidate:
- Takes user context (engagement history) and candidate posts as input
- Uses special attention masking so candidates cannot attend to each other
- Outputs probabilities for each action type (like, reply, repost, click, etc.)
See phoenix/README.md for detailed architecture documentation.
Location: candidate-pipeline/
A reusable framework for building recommendation pipelines. Defines traits for:
| Trait | Purpose |
|---|---|
Source |
Fetch candidates from a data source |
Hydrator |
Enrich candidates with additional features |
Filter |
Remove candidates that shouldn't be shown |
Scorer |
Compute scores for ranking |
Selector |
Sort and select top candidates |
SideEffect |
Run async side effects (caching, logging) |
The framework runs sources and hydrators in parallel where possible, with configurable error handling and logging.
-
Query Hydration: Fetch the user's recent engagements history and metadata (eg. following list)
-
Candidate Sourcing: Retrieve candidates from:
- Thunder: Recent posts from followed accounts (in-network)
- Phoenix Retrieval: ML-discovered posts from the global corpus (out-of-network)
-
Candidate Hydration: Enrich candidates with:
- Core post data (text, media, etc.)
- Author information (username, verification status)
- Video duration (for video posts)
- Subscription status
-
Pre-Scoring Filters: Remove posts that are:
- Duplicates
- Too old
- From the viewer themselves
- From blocked/muted accounts
- Containing muted keywords
- Previously seen or recently served
- Ineligible subscription content
-
Scoring: Apply multiple scorers sequentially:
- Phoenix Scorer: Get ML predictions from the Phoenix transformer model
- Weighted Scorer: Combine predictions into a final relevance score
- Author Diversity Scorer: Attenuate repeated author scores for diversity
- OON Scorer: Adjust scores for out-of-network content
-
Selection: Sort by score and select the top K candidates
-
Post-Selection Processing: Final validation of post candidates to be served
The Phoenix Grok-based transformer model predicts probabilities for multiple engagement types:
Predictions:
├── P(favorite)
├── P(reply)
├── P(repost)
├── P(quote)
├── P(click)
├── P(profile_click)
├── P(video_view)
├── P(photo_expand)
├── P(share)
├── P(dwell)
├── P(follow_author)
├── P(not_interested)
├── P(block_author)
├── P(mute_author)
└── P(report)
The Weighted Scorer combines these into a final score:
Final Score = Σ (weight_i × P(action_i))
Positive actions (like, repost, share) have positive weights. Negative actions (block, mute, report) have negative weights, pushing down content the user would likely dislike.
Filters run at two stages:
Pre-Scoring Filters:
| Filter | Purpose |
|---|---|
DropDuplicatesFilter |
Remove duplicate post IDs |
CoreDataHydrationFilter |
Remove posts that failed to hydrate core metadata |
AgeFilter |
Remove posts older than threshold |
SelfpostFilter |
Remove user's own posts |
RepostDeduplicationFilter |
Dedupe reposts of same content |
IneligibleSubscriptionFilter |
Remove paywalled content user can't access |
PreviouslySeenPostsFilter |
Remove posts user has already seen |
PreviouslyServedPostsFilter |
Remove posts already served in session |
MutedKeywordFilter |
Remove posts with user's muted keywords |
AuthorSocialgraphFilter |
Remove posts from blocked/muted authors |
Post-Selection Filters:
| Filter | Purpose |
|---|---|
VFFilter |
Remove posts that are deleted/spam/violence/gore etc. |
DedupConversationFilter |
Deduplicate multiple branches of the same conversation thread |
The system relies entirely on the Grok-based transformer to learn relevance from user engagement sequences. No manual feature engineering for content relevance. This significantly reduces the complexity in our data pipelines and serving infrastructure.
During transformer inference, candidates cannot attend to each other—only to the user context. This ensures the score for a post doesn't depend on which other posts are in the batch, making scores consistent and cacheable.
Both retrieval and ranking use multiple hash functions for embedding lookup
Rather than predicting a single "relevance" score, the model predicts probabilities for many actions.
The candidate-pipeline crate provides a flexible framework for building recommendation pipelines with:
- Separation of pipeline execution and monitoring from business logic
- Parallel execution of independent stages and graceful error handling
- Easy addition of new sources, hydrations, filters, and scorers
This project is licensed under the Apache License 2.0. See LICENSE for details.