ChatGPT 对大脑的影响:使用人工智能助手时认知负债的累积
Brain on ChatGPT: Accumulation of Cognitive Debt When Using an AI Assistant

原始链接: https://www.media.mit.edu/publications/your-brain-on-chatgpt/

本研究调查了使用大型语言模型(LLM)进行论文写作对认知活动和表现的影响。研究人员比较了使用LLM、搜索引擎或仅依靠自身知识的参与者的大脑活动(通过脑电图)和论文质量。 研究发现,使用LLM与大脑连接减少相关,表明写作过程中认知参与度降低。最初使用LLM的参与者在切换到无辅助写作时表现出参与度不足的迹象。相反,初次使用LLM的参与者表现出与使用搜索引擎相似的大脑活动增加。 重要的是,LLM用户对自己作品的所有权感最低,并且难以准确回忆自己的写作内容。随着时间的推移,LLM用户在神经、语言和行为指标方面持续表现不佳。研究结果表明,虽然LLM很方便,但依赖它们可能会付出认知代价,引发对其对学习和批判性思维技能的长期影响的担忧。

一个黑客新闻的讨论围绕一项研究(arxiv.org/abs/2506.08872),探讨了依赖ChatGPT等AI助手可能产生的“认知债务”。用户普遍认同该研究的发现——甚至在未阅读全文的情况下——报告称,大量使用LLM后,他们自己的认知能力明显下降。 核心问题在于,将思考外包给AI可能会阻碍学习和解决问题的能力,就像“直接给孩子们答案,而不教他们如何获得答案”。一些人担心LLM广泛整合的长期影响,而另一些人则认为这项研究存在缺陷或只是陈述显而易见的事实(“我们让一组人不做某些事情,后来发现他们不做这些事情就学不到任何东西”)。 值得注意的是,一位评论员指出,LLM用户甚至难以准确回忆起他们*自己*使用AI辅助生成的工作。
相关文章

原文

This study explores the neural and behavioral consequences of LLM-assisted essay writing. Participants were divided into three groups: LLM, Search Engine, and Brain-only (no tools). Each completed three sessions under the same condition. In a fourth session, LLM users were reassigned to Brain-only group (LLM-to-Brain), and Brain-only users were reassigned to LLM condition (Brain-to-LLM). A total of 54 participants took part in Sessions 1-3, with 18 completing session 4. We used electroencephalography (EEG) to assess cognitive load during essay writing, and analyzed essays using NLP, as well as scoring essays with the help from human teachers and an AI judge. Across groups, NERs, n-gram patterns, and topic ontology showed within-group homogeneity. EEG revealed significant differences in brain connectivity: Brain-only participants exhibited the strongest, most distributed networks; Search Engine users showed moderate engagement; and LLM users displayed the weakest connectivity. Cognitive activity scaled down in relation to external tool use. In session 4, LLM-to-Brain participants showed reduced alpha and beta connectivity, indicating under-engagement. Brain-to-LLM users exhibited higher memory recall and activation of occipito-parietal and prefrontal areas, similar to Search Engine users. Self-reported ownership of essays was the lowest in the LLM group and the highest in the Brain-only group. LLM users also struggled to accurately quote their own work. While LLMs offer immediate convenience, our findings highlight potential cognitive costs. Over four months, LLM users consistently underperformed at neural, linguistic, and behavioral levels. These results raise concerns about the long-term educational implications of LLM reliance and underscore the need for deeper inquiry into AI's role in learning.

联系我们 contact @ memedata.com