展示HN:LLMNet – 离线互联网,无需互联网即可搜索网页
Show HN: LLMNet – The Offline Internet, Search the web without the web

原始链接: https://github.com/skorotkiewicz/llmnet

## LLMNet:您的私有离线AI搜索引擎 LLMNet提供安全快速的搜索体验,由您*本地*的大型语言模型(LLM)提供支持。它使用向量数据库(RAG)将您的LLM转化为强大的离线知识库,提供即时答案——无需互联网连接。 LLMNet基于Next.js、Tailwind CSS和PostgreSQL构建,优先考虑隐私;您的数据*绝不会*离开您的设备。您可以轻松索引网站或维基,将内容转换为可搜索的Postgres向量数据库。 主要功能包括亚秒级语义搜索、现代深色模式UI以及递归摄取管道,该管道可以抓取、转换为Markdown、分块和嵌入内容,以实现高效检索。 LLMNet需要本地运行的LLM服务器(如Llama.cpp或Ollama)以及安装了pgvector扩展的Postgres数据库。非常适合注重数据主权和离线信息访问的用户。

Hacker News 新闻 | 过去 | 评论 | 提问 | 展示 | 招聘 | 提交 登录 Show HN: LLMNet – 离线互联网,无需互联网即可搜索网页 (github.com/skorotkiewicz) 7 分,由 modinfo 4 小时前发布 | 隐藏 | 过去 | 收藏 | 1 条评论 chrisjj 4 小时前 [–] 标题党。“你自己的知识库”<>“离线互联网” 回复 指南 | 常见问题 | 列表 | API | 安全 | 法律 | 申请 YC | 联系 搜索:
相关文章

原文

The Offline Internet. A premium, private, and AI-powered search experience that lives entirely on your machine.

LLMNet transforms your local LLMs into a structured search engine. It combines the power of local generative AI with a high-performance Vector Database (RAG) to provide instant, offline answers from your own knowledge base.

LLMNet Results

Home Page - Screenshot

LLMNet Home


  • 🔒 100% Private: Your queries and data never leave your local network.
  • 🧠 Local RAG: Index any website or wiki into a persistent Postgres Vector DB.
  • ⚡ Instant Results: Sub-second semantic search using pgvector & HNSW indexing.
  • 🎨 Premium UI: A glassmorphic, dark-mode interface inspired by modern search engines.
  • 🌐 No Internet Required: Once indexed, your knowledge stays available offline.

  • Frontend: Next.js, Tailwind CSS
  • Intelligence: Local LLMs (via OpenAI-compatible APIs)
  • Database: PostgreSQL with pgvector
  • Orchestration: Bun, Cheerio (Crawl), Turndown (Markdown)

Ensure you have the following running locally:

  • LLM Server: Port configured in .env (e.g., Llama.cpp, Ollama)
  • Embedding Server: Port configured in .env
  • Database: Postgres with the vector extension (see postgres-pgvector/)

Configure your environment variables in .env:

# Example configuration
API_BASE_URL=http://localhost:8888/v1
EMBEDDING_URL=http://localhost:8889/v1/embeddings
# Install dependencies
bun install

# Initialize Database
bun postgres-pgvector/migrate.ts

# Start the engine
bun dev

Visit localhost:3000 to start searching.


LLMNet features a recursive ingestion pipeline. Simply paste a documentation URL or a GitHub Wiki link into the Indexer, and the system will:

  1. Crawl the site (Recursive BFS).
  2. Convert content to clean Markdown.
  3. Chunk text using a Recursive Character Splitter.
  4. Embed & Store vectors for semantic retrieval.

Built for those who value privacy and data sovereignty.

联系我们 contact @ memedata.com