展示HN:Axiomeer – 一个用于AI代理的开放市场
Show HN: Axiomeer – An open marketplace for AI agents

原始链接: https://github.com/ujjwalredd/Axiomeer

## Axiomeer:AI 代理市场 Axiomeer 是一个开箱即用的市场,旨在简化 AI 代理的开发。它为代理提供了一个中心枢纽,用于**发现、评估和集成**关键组件,例如 RAG 系统、数据集、API(超过 91 个)、文档和代理构建块——从而大大减少了基础设施设置时间。 传统上,构建 AI 代理需要数周的定制开发。Axiomeer 通过提供**现成的资源**来解决这个问题,这些资源可以通过强大的发现引擎进行搜索,该引擎利用语义搜索和 LLM 能力提取。例如,包含集成文档和 CRM API 的预构建客户服务代理、包含分析数据集的数据分析工具以及内容创作资源。 该平台拥有**100% 的产品可用性**和企业级安全功能,包括身份验证、速率限制和 Docker 部署。开发者可以轻松集成自己的资源,并且该市场提供对成本、延迟和来源的全面跟踪。Axiomeer 使用 FastAPI、PostgreSQL 和 FAISS 构建,并正在积极扩展其功能和产品供应。

## Axiomeer:一个AI代理开放市场 Axiomeer是一个新的开源协议,旨在通过引入工具市场和强大的信任层来提高AI代理的可靠性。代理不再依赖预编程的集成,而是动态地发现和利用来自各种提供者的API、数据集和模型。 该系统根据能力(70%)、延迟(20%)和成本(10%)对选项进行排名,然后验证结果以防止“幻觉”——如果证据质量差,代理会避免给出答案。提供者通过简单的JSON清单发布工具,并且该架构支持返回结构化JSON的任何HTTP端点。 创建者ujjwalreddyks正在寻求贡献者来扩展提供者网络。版本2现在包含7个真实的免费API(天气、汇率等),并在基础测试中获得了83%的通过率,证明了准确性和可靠性的提高。AutoJanitor(运行自主代理)也反映了,一个关键的已解决挑战是确保输出的事实依据。
相关文章

原文

Axiomeer Banner

The Universal Marketplace for AI Agents

Discover, evaluate, and integrate RAGs, datasets, MCP servers, APIs, documents, and agent components. Everything your AI agent needs to complete any task - all in one intelligent marketplace.

Version Python Products Status

Demo


Axiomeer is a production-ready AI Agent Marketplace that serves as the central hub where AI agents discover and access everything they need:

  • RAG Systems - Pre-built retrieval augmented generation pipelines
  • Datasets - Curated data collections for training and inference
  • MCP Servers - Model Context Protocol integrations
  • APIs - 91+ external service integrations
  • Documents - Pre-processed knowledge bases and documentation
  • Agent Components - Reusable agent building blocks
  • Tools - Specialized utilities and functions

Traditional Problem:

Company has AI agent → Needs to build custom RAG system
                     → Needs to find datasets
                     → Needs to integrate APIs
                     → Needs documentation
                     → Spends weeks building infrastructure

Axiomeer Solution:

Company has AI agent → Searches Axiomeer marketplace
                     → Finds ready-to-use RAG system
                     → Discovers relevant datasets
                     → Gets API integrations
                     → Accesses processed documents
                     → Everything ready in minutes

Case 1: Building a Customer Service Agent

Need: AI agent that answers customer questions about products Axiomeer Provides:

  • Product documentation RAG system
  • Customer interaction datasets
  • FAQ knowledge bases
  • CRM API integrations
  • Pre-built response templates

Case 2: Data Analysis Agent

Need: AI agent that generates insights from company data Axiomeer Provides:

  • Analytics datasets
  • Database MCP connectors
  • Visualization APIs
  • Statistical tools
  • Industry benchmark data

Case 3: Content Creation Agent

Need: AI agent that creates marketing content Axiomeer Provides:

  • Writing style datasets
  • Content generation RAGs
  • Image/media APIs
  • SEO tools
  • Template libraries

PRODUCTION MILESTONE ACHIEVED:

  • 100% Product Availability (91/91 products tested and working)
  • Enterprise Security (zero vulnerabilities, cryptographic secrets)
  • Production Authentication (JWT + API keys + bcrypt + rate limiting)
  • Docker Deployment (PostgreSQL + FastAPI + FAISS semantic search)
  • Automated Testing (comprehensive health checks for all products)

Recent Achievements:

  • Fixed critical rate limiter timezone bug
  • Achieved 100% product availability across all 14 categories
  • Enhanced semantic search for product discovery
  • Added comprehensive validation and testing
  • Eliminated all hardcoded secrets and security vulnerabilities

  • Docker & Docker Compose
  • Python 3.10+
  • 4GB RAM minimum
  • PostgreSQL 15+ (included in Docker)
# Clone repository
git clone https://github.com/ujjwalredd/Axiomeer.git
cd axiomeer

# Start the marketplace (includes PostgreSQL + API + Semantic Search)
docker-compose up -d

# Verify deployment
curl http://localhost:8000/health
# Expected: {"status":"ok"}

# Check available products
curl http://localhost:8000/apps | jq 'length'
# Expected: 91

Create Your First AI Agent Integration

# 1. Sign up
curl -X POST http://localhost:8000/auth/signup \
  -H "Content-Type: application/json" \
  -d '{
    "email": "[email protected]",
    "username": "my_ai_agent",
    "password": "secure_password_123"
  }'

# 2. Login and get access token
curl -X POST http://localhost:8000/auth/login \
  -H "Content-Type: application/json" \
  -d '{
    "email": "[email protected]",
    "password": "secure_password_123"
  }'
# Save the "access_token" from response

# 3. Create API key for your agent
TOKEN="<your_access_token>"
curl -X POST http://localhost:8000/auth/api-keys \
  -H "Authorization: Bearer $TOKEN" \
  -H "Content-Type: application/json" \
  -d '{"name": "Production Agent Key"}'
# Save the "key" from response (starts with axm_)

# 4. Discover products for your agent's task
API_KEY="axm_xxxxx"
curl -X POST http://localhost:8000/shop \
  -H "X-API-Key: $API_KEY" \
  -H "Content-Type: application/json" \
  -d '{
    "task": "I need to build a RAG system for customer documentation",
    "auto_extract_capabilities": true,
    "max_results": 5
  }'

# 5. Execute a discovered product
curl -X POST http://localhost:8000/execute \
  -H "X-API-Key: $API_KEY" \
  -H "Content-Type: application/json" \
  -d '{
    "app_id": "wikipedia_search",
    "task": "Find information about artificial intelligence",
    "inputs": {},
    "require_citations": true
  }'

🏗️ Core Architecture

How AI Agents Connect to the Marketplace

┌─────────────────────────────────────────────────────────────┐
│                     AI AGENT                                │
│  (Your custom agent needing RAGs, APIs, datasets, etc.)     │
└──────────────────────┬──────────────────────────────────────┘
                       │
                       │ 1. Task Description
                       │    "I need customer data analysis tools"
                       ▼
┌─────────────────────────────────────────────────────────────┐
│                  AXIOMEER MARKETPLACE                       │
│                                                             │
│  ┌──────────────────────────────────────────────────────┐   │
│  │  DISCOVERY ENGINE (Semantic Search + LLM)            │   │
│  │  • FAISS vector search (384-dim embeddings)          │   │
│  │  • LLM capability extraction (Ollama phi3.5)         │   │
│  │  • Weighted ranking algorithm                        │   │
│  └──────────────────────────────────────────────────────┘   │
│                                                             │
│  ┌──────────────────────────────────────────────────────┐   │
│  │  PRODUCT CATALOG                                     │   │
│  │  • RAG Systems         • Datasets                    │   │
│  │  • MCP Servers         • APIs (91+)                  │   │
│  │  • Documents           • Agent Components            │   │
│  └──────────────────────────────────────────────────────┘   │
│                                                             │
│  ┌──────────────────────────────────────────────────────┐   │
│  │  EVALUATION & RANKING                                │   │
│  │  • Capability Match (70%)                            │   │
│  │  • Semantic Relevance (25%)                          │   │
│  │  • Trust Score (15%)                                 │   │
│  │  • Latency Penalty (20%)                             │   │
│  │  • Cost Factor (10%)                                 │   │
│  └──────────────────────────────────────────────────────┘   │
└──────────────────────┬──────────────────────────────────────┘
                       │
                       │ 2. Ranked Product Recommendations
                       │    [Analytics Dataset, CRM API, ...]
                       ▼
┌─────────────────────────────────────────────────────────────┐
│                     AI AGENT                                │
│  Receives ready-to-use products matching requirements       │
└─────────────────────────────────────────────────────────────┘

Intelligent Product Discovery

1. Semantic Search (FAISS)

  • 384-dimensional embeddings (all-MiniLM-L6-v2)
  • Sub-100ms vector similarity search
  • Finds products by meaning, not just keywords

2. LLM Capability Extraction

  • Ollama phi3.5:3.8b model
  • Automatically extracts required capabilities from natural language
  • Example: "analyze customer feedback" → ["analytics", "nlp", "sentiment"]

3. Weighted Ranking Algorithm

score = (
    0.70 * capability_coverage +    # Must have required features
    0.25 * semantic_relevance +     # How well it matches the task
    0.15 * trust_score -            # Reliability and quality
    0.20 * latency_penalty -        # Response time impact
    0.10 * cost_factor              # Usage cost
)

91 Products Across 14 Categories

AI Models & MCP Servers (4)

  • Ollama Mistral 7B - General purpose LLM
  • Ollama Llama3 8B - Advanced reasoning
  • Ollama CodeLlama 13B - Code generation
  • Ollama DeepSeek Coder - Specialized coding
  • Exchange Rates API - Real-time currency data
  • Blockchain Info - Bitcoin/crypto analytics
  • Coinbase Prices - Cryptocurrency pricing

Entertainment Datasets (5)

  • Pokemon Data - Complete Pokemon database
  • Cat Facts - Animal knowledge base
  • Dog Images - Image dataset API
  • Breaking Bad Quotes - TV show dataset
  • Rick & Morty Characters - Character database
  • TheMealDB - Recipe database
  • Fruityvice - Nutrition information
  • CocktailDB - Drink recipes
  • Chuck Norris Jokes - Humor dataset
  • Kanye Quotes - Celebrity quotes
  • Dice Roll - Random number generation
  • Coin Flip - Decision tools
  • Corporate BS Generator - Business text
  • Yes/No API - Decision helper
  • Useless Facts - Trivia data
  • Numbers Trivia - Mathematical facts
  • IP Geolocation - Location services
  • REST Countries - Country information
  • Nominatim Geocoding - Address lookup
  • Geonames - Geographic database

Government & Open Data (11)

  • NASA APOD - Space imagery
  • NASA Asteroids - Astronomy data
  • NASA Mars Rover - Mars mission data
  • World Bank Indicators - Economic data
  • COVID Stats - Pandemic tracking
  • Census Demographics - Population data
  • UK Police Data - Crime statistics
  • Data.gov - US government data
  • EU Open Data - European datasets
  • FRED Economic - Federal Reserve data
  • IMF Financial - International finance

Knowledge & Research (12)

  • Wikipedia Search - Encyclopedia
  • Wikipedia Dumps - Full text access
  • Wikidata Search - Structured knowledge
  • Wikidata SPARQL - Query endpoint
  • DBpedia SPARQL - Semantic web data
  • PubMed Search - Medical research
  • arXiv Papers - Scientific preprints
  • Crossref Metadata - Academic citations
  • Semantic Scholar - AI research papers
  • Open Library - Book information
  • Archive.org - Digital library
  • Gutenberg Books - Public domain texts
  • Universities Search - Educational institutions
  • Dictionary API - Word definitions
  • Word Synonyms - Thesaurus
  • Language Detection - Auto-detect languages
  • Lorem Ipsum - Placeholder text
  • Gender Prediction - Name analysis
  • Datamuse - Word associations
  • Unsplash Photos - Stock photography
  • TMDB Movies - Film database
  • OMDB Movies - Movie information
  • Genius Lyrics - Song lyrics
  • MusicBrainz - Music metadata
  • Pexels Media - Stock media
  • Advice Slip - Random advice
  • ZenQuotes - Inspirational quotes
  • Quotable - Famous quotations
  • Newton Math - Mathematical operations
  • Periodic Table - Chemical elements
  • Sunrise/Sunset - Solar calculations
  • Space People - Astronaut tracker
  • Random User Data - Person generator
  • UUID Generator - Unique identifiers
  • QR Code Generator - QR creation
  • Base64 Encode/Decode - Data encoding
  • Color Info - Color information
  • Placeholder Images - Image placeholders
  • HTTPBin - HTTP testing
  • Postman Echo - API testing
  • IP Address Lookup - IP information
  • Random Data Generator - Test data
  • Trivia Questions - Quiz content
  • Joke API - Humor content
  • Bored Activities - Activity suggestions
  • Zippopotam - Postal code lookup

# Your agent describes what it needs in natural language
response = marketplace.shop(
    task="I need tools to analyze customer sentiment from reviews",
    auto_extract_capabilities=True  # LLM extracts: ["analytics", "nlp", "sentiment"]
)
# Returns: Sentiment analysis APIs, NLP datasets, review RAGs
# Execute discovered products immediately
result = marketplace.execute(
    app_id="sentiment_analyzer",
    task="Analyze this review: 'Great product!'",
    inputs={"text": "Great product!"}
)
# Returns: Structured sentiment analysis with citations
  • Automatic cost tracking per product
  • Latency monitoring
  • Success rate analytics
  • Citation and provenance tracking
  • JWT token authentication (HMAC-SHA256)
  • API key management (SHA-256 hashed)
  • Rate limiting (tier-based: 100/1000/10000 req/hr)
  • bcrypt password hashing (cost 12)
  • Audit trails for all executions

Add your RAG, dataset, MCP server, or API to the marketplace:

{
  "id": "my_customer_rag",
  "name": "Customer Support RAG System",
  "description": "Pre-built RAG for customer service documentation",
  "category": "rag_systems",
  "capabilities": ["retrieval", "qa", "customer_support"],
  "product_type": "rag",
  "cost_est_usd": 0.01,
  "latency_est_ms": 200,
  "executor_type": "http_api",
  "executor_url": "https://your-server.com/rag/query",
  "test_inputs": {"query": "How do I reset my password?"}
}
  • List free products for exposure
  • Charge per-use for premium products
  • Track usage analytics
  • Build reputation through trust scores

  • Framework: FastAPI (async, high-performance Python)
  • Database: PostgreSQL 15 (with Alembic migrations)
  • Search: FAISS vector similarity (384-dim embeddings)
  • LLM: Ollama phi3.5:3.8b (capability extraction)
  • Auth: JWT (python-jose) + bcrypt password hashing
  • Validation: Pydantic v2 (type-safe request/response)
  • Containers: Docker + Docker Compose
  • Orchestration: Multi-container setup (API + PostgreSQL)
  • Monitoring: Health check endpoints + automated testing
  • Scaling: Stateless API design (horizontal scaling ready)
  • Embeddings: sentence-transformers (all-MiniLM-L6-v2)
  • Vector Search: FAISS CPU (Facebook AI Similarity Search)
  • LLM Integration: Ollama API (local model execution)
  • Semantic Matching: Cosine similarity scoring

POST /shop - Discover Products

AI agents describe their needs, marketplace returns ranked recommendations.

Request:

{
  "task": "I need to build a customer support chatbot with FAQ capabilities",
  "auto_extract_capabilities": true,
  "max_results": 10,
  "required_capabilities": ["qa", "retrieval"],  // Optional
  "client_id": "my_ai_agent_v1"  // Optional tracking
}

Response:

{
  "matches": [
    {
      "app_id": "faq_rag_system",
      "name": "FAQ RAG System",
      "description": "Pre-built retrieval system for frequently asked questions",
      "score": 0.95,
      "capability_coverage": 1.0,
      "semantic_relevance": 0.89,
      "why_matched": "Perfect capability match for QA and retrieval"
    }
  ],
  "total_searched": 91,
  "llm_extracted_capabilities": ["qa", "retrieval", "chatbot", "support"]
}

POST /execute - Use a Product

Execute a discovered product with specific inputs.

Request:

{
  "app_id": "faq_rag_system",
  "task": "How do I reset my password?",
  "inputs": {
    "query": "password reset procedure"
  },
  "require_citations": true
}

Response:

{
  "app_id": "faq_rag_system",
  "ok": true,
  "output": {
    "answer": "To reset your password: 1. Go to login page, 2. Click 'Forgot Password'...",
    "citations": ["https://docs.example.com/password-reset"],
    "retrieved_at": "2026-02-08T12:34:56Z",
    "confidence": 0.92
  },
  "provenance": {
    "sources": ["Internal FAQ database"],
    "method": "vector_similarity_search"
  },
  "run_id": 12345
}

POST /auth/signup - Create Account

POST /auth/login - Get JWT Token

POST /auth/api-keys - Generate API Key

GET /auth/me - Get Current User

GET /auth/api-keys - List Your API Keys

GET /apps - List All Products

GET /apps/{app_id} - Get Product Details

GET /runs - View Execution History

GET /runs/{run_id} - Get Execution Details


Run Comprehensive Health Check

# Tests all 91 products automatically
python scripts/api_health_check.py

Expected Output:

================================================================================
AXIOMEER PRODUCTION READINESS - API HEALTH CHECK
================================================================================

Loading API manifests...
Found 91 APIs to test

Testing APIs...

[1/91] Testing exchange_rates... ✓ PASS (324ms)
[2/91] Testing blockchain_info... ✓ PASS (456ms)
...
[91/91] Testing ollama_deepseek_coder... ✓ PASS (19ms)

================================================================================
SUMMARY
================================================================================

Total APIs: 91
Passed: 91 (100.0%)
Failed: 0 (0.0%)

================================================================================
PRODUCTION READINESS ASSESSMENT
================================================================================

✓ ALL APIS PASSING - PRODUCTION READY
# Run test suite
pytest tests/ -v

# Run specific category
pytest tests/test_auth.py -v
pytest tests/test_rate_limit.py -v

Environment Variables (.env)

# Database Configuration
DB_PASSWORD=<43-char-cryptographic-secret>
DATABASE_URL=postgresql://axiomeer:${DB_PASSWORD}@localhost:5432/axiomeer

# Authentication (REQUIRED in production)
AUTH_ENABLED=true
JWT_SECRET_KEY=<43-char-cryptographic-secret>
JWT_ACCESS_TOKEN_EXPIRE_MINUTES=60

# Rate Limiting
RATE_LIMIT_ENABLED=true
RATE_LIMIT_FREE_TIER_PER_HOUR=100
RATE_LIMIT_STARTER_TIER_PER_HOUR=1000
RATE_LIMIT_PRO_TIER_PER_HOUR=10000

# Semantic Search
SEMANTIC_SEARCH_ENABLED=true
SEMANTIC_SEARCH_MODEL=all-MiniLM-L6-v2

# LLM (Ollama)
OLLAMA_URL=http://localhost:11434/api/generate
OLLAMA_MODEL=phi3.5:3.8b
  • JWT tokens with HMAC-SHA256 signing
  • API keys with SHA-256 hashing
  • bcrypt password hashing (cost factor 12)
  • Token expiration (configurable, default 60 min)
  • Tier-based rate limiting
  • Usage tracking per user
  • API key management (create/revoke)
  • Fine-grained access control
  • Secure PostgreSQL configuration
  • Docker network isolation
  • No hardcoded secrets (environment-based)
  • Fail-fast security validation
  • Audit trails (all executions logged)
  • Citation tracking (provenance for AI outputs)
  • Cost tracking (transparent pricing)
  • GDPR-ready (user data management)

  • API Documentation: See API Reference
  • Product Manifests: manifests/categories/
  • Source Code: src/marketplace/
  • Tests: tests/

Issue: "Not authenticated"

# Solution: Include API key or JWT token
curl -H "X-API-Key: axm_xxxxx" http://localhost:8000/execute ...
# OR
curl -H "Authorization: Bearer <token>" http://localhost:8000/execute ...

Issue: "Rate limit exceeded"

# Solution: Wait for rate limit window to reset (shown in error)
# OR upgrade to higher tier
# Check current limits:
curl -H "X-API-Key: axm_xxxxx" http://localhost:8000/auth/me

Issue: Products not loading

# Solution: Restart API container to reload manifests
docker-compose restart api

# Verify products loaded
curl http://localhost:8000/apps | jq 'length'  # Should return 91

Phase 1: Core Marketplace

  • Product discovery and ranking
  • 91 products across 14 categories
  • Authentication and rate limiting
  • Semantic search with FAISS
  • Docker deployment

Phase 2: Enhanced Products (Q1 2026)

Phase 3: Provider Tools (Q2 2026)

Phase 4: Enterprise Features (Q3 2026)

Phase 5: Scale & Optimize (Q4 2026)


Want to list your RAG, dataset, MCP server, or API?

  1. Create a product manifest (JSON)
  2. Implement the executor interface
  3. Submit via pull request
  4. Pass quality verification
  5. Go live on the marketplace!

Template:

{
  "id": "your_product_id",
  "name": "Your Product Name",
  "description": "Clear description of what your product does",
  "category": "rag_systems|datasets|apis|mcp_servers|documents",
  "capabilities": ["capability1", "capability2"],
  "product_type": "rag|dataset|api|mcp|document",
  "freshness": "static|daily|realtime",
  "citations_supported": true,
  "latency_est_ms": 200,
  "cost_est_usd": 0.01,
  "executor_type": "http_api|grpc|local",
  "executor_url": "https://your-endpoint.com/api",
  "test_inputs": {"param": "example_value"}
}
  • Report bugs via GitHub Issues
  • Submit feature requests
  • Contribute code improvements
  • Improve documentation

Proprietary - © 2026 Axiomeer

Contact: [[email protected]]


Built with:

  • FastAPI - Modern Python web framework
  • PostgreSQL - Reliable database
  • FAISS - Efficient vector similarity search
  • Sentence Transformers - Semantic embeddings
  • Ollama - Local LLM execution
  • Docker - Containerization


Made for the AI Agent community

Empowering AI agents to access the tools they need, when they need them.

联系我们 contact @ memedata.com