The Universal Marketplace for AI Agents
Discover, evaluate, and integrate RAGs, datasets, MCP servers, APIs, documents, and agent components. Everything your AI agent needs to complete any task - all in one intelligent marketplace.
Axiomeer is a production-ready AI Agent Marketplace that serves as the central hub where AI agents discover and access everything they need:
- RAG Systems - Pre-built retrieval augmented generation pipelines
- Datasets - Curated data collections for training and inference
- MCP Servers - Model Context Protocol integrations
- APIs - 91+ external service integrations
- Documents - Pre-processed knowledge bases and documentation
- Agent Components - Reusable agent building blocks
- Tools - Specialized utilities and functions
Traditional Problem:
Company has AI agent → Needs to build custom RAG system
→ Needs to find datasets
→ Needs to integrate APIs
→ Needs documentation
→ Spends weeks building infrastructure
Axiomeer Solution:
Company has AI agent → Searches Axiomeer marketplace
→ Finds ready-to-use RAG system
→ Discovers relevant datasets
→ Gets API integrations
→ Accesses processed documents
→ Everything ready in minutes
Need: AI agent that answers customer questions about products Axiomeer Provides:
- Product documentation RAG system
- Customer interaction datasets
- FAQ knowledge bases
- CRM API integrations
- Pre-built response templates
Need: AI agent that generates insights from company data Axiomeer Provides:
- Analytics datasets
- Database MCP connectors
- Visualization APIs
- Statistical tools
- Industry benchmark data
Need: AI agent that creates marketing content Axiomeer Provides:
- Writing style datasets
- Content generation RAGs
- Image/media APIs
- SEO tools
- Template libraries
PRODUCTION MILESTONE ACHIEVED:
- 100% Product Availability (91/91 products tested and working)
- Enterprise Security (zero vulnerabilities, cryptographic secrets)
- Production Authentication (JWT + API keys + bcrypt + rate limiting)
- Docker Deployment (PostgreSQL + FastAPI + FAISS semantic search)
- Automated Testing (comprehensive health checks for all products)
Recent Achievements:
- Fixed critical rate limiter timezone bug
- Achieved 100% product availability across all 14 categories
- Enhanced semantic search for product discovery
- Added comprehensive validation and testing
- Eliminated all hardcoded secrets and security vulnerabilities
- Docker & Docker Compose
- Python 3.10+
- 4GB RAM minimum
- PostgreSQL 15+ (included in Docker)
# Clone repository
git clone https://github.com/ujjwalredd/Axiomeer.git
cd axiomeer
# Start the marketplace (includes PostgreSQL + API + Semantic Search)
docker-compose up -d
# Verify deployment
curl http://localhost:8000/health
# Expected: {"status":"ok"}
# Check available products
curl http://localhost:8000/apps | jq 'length'
# Expected: 91# 1. Sign up
curl -X POST http://localhost:8000/auth/signup \
-H "Content-Type: application/json" \
-d '{
"email": "[email protected]",
"username": "my_ai_agent",
"password": "secure_password_123"
}'
# 2. Login and get access token
curl -X POST http://localhost:8000/auth/login \
-H "Content-Type: application/json" \
-d '{
"email": "[email protected]",
"password": "secure_password_123"
}'
# Save the "access_token" from response
# 3. Create API key for your agent
TOKEN="<your_access_token>"
curl -X POST http://localhost:8000/auth/api-keys \
-H "Authorization: Bearer $TOKEN" \
-H "Content-Type: application/json" \
-d '{"name": "Production Agent Key"}'
# Save the "key" from response (starts with axm_)
# 4. Discover products for your agent's task
API_KEY="axm_xxxxx"
curl -X POST http://localhost:8000/shop \
-H "X-API-Key: $API_KEY" \
-H "Content-Type: application/json" \
-d '{
"task": "I need to build a RAG system for customer documentation",
"auto_extract_capabilities": true,
"max_results": 5
}'
# 5. Execute a discovered product
curl -X POST http://localhost:8000/execute \
-H "X-API-Key: $API_KEY" \
-H "Content-Type: application/json" \
-d '{
"app_id": "wikipedia_search",
"task": "Find information about artificial intelligence",
"inputs": {},
"require_citations": true
}'┌─────────────────────────────────────────────────────────────┐
│ AI AGENT │
│ (Your custom agent needing RAGs, APIs, datasets, etc.) │
└──────────────────────┬──────────────────────────────────────┘
│
│ 1. Task Description
│ "I need customer data analysis tools"
▼
┌─────────────────────────────────────────────────────────────┐
│ AXIOMEER MARKETPLACE │
│ │
│ ┌──────────────────────────────────────────────────────┐ │
│ │ DISCOVERY ENGINE (Semantic Search + LLM) │ │
│ │ • FAISS vector search (384-dim embeddings) │ │
│ │ • LLM capability extraction (Ollama phi3.5) │ │
│ │ • Weighted ranking algorithm │ │
│ └──────────────────────────────────────────────────────┘ │
│ │
│ ┌──────────────────────────────────────────────────────┐ │
│ │ PRODUCT CATALOG │ │
│ │ • RAG Systems • Datasets │ │
│ │ • MCP Servers • APIs (91+) │ │
│ │ • Documents • Agent Components │ │
│ └──────────────────────────────────────────────────────┘ │
│ │
│ ┌──────────────────────────────────────────────────────┐ │
│ │ EVALUATION & RANKING │ │
│ │ • Capability Match (70%) │ │
│ │ • Semantic Relevance (25%) │ │
│ │ • Trust Score (15%) │ │
│ │ • Latency Penalty (20%) │ │
│ │ • Cost Factor (10%) │ │
│ └──────────────────────────────────────────────────────┘ │
└──────────────────────┬──────────────────────────────────────┘
│
│ 2. Ranked Product Recommendations
│ [Analytics Dataset, CRM API, ...]
▼
┌─────────────────────────────────────────────────────────────┐
│ AI AGENT │
│ Receives ready-to-use products matching requirements │
└─────────────────────────────────────────────────────────────┘
1. Semantic Search (FAISS)
- 384-dimensional embeddings (all-MiniLM-L6-v2)
- Sub-100ms vector similarity search
- Finds products by meaning, not just keywords
2. LLM Capability Extraction
- Ollama phi3.5:3.8b model
- Automatically extracts required capabilities from natural language
- Example: "analyze customer feedback" → ["analytics", "nlp", "sentiment"]
3. Weighted Ranking Algorithm
score = (
0.70 * capability_coverage + # Must have required features
0.25 * semantic_relevance + # How well it matches the task
0.15 * trust_score - # Reliability and quality
0.20 * latency_penalty - # Response time impact
0.10 * cost_factor # Usage cost
)- Ollama Mistral 7B - General purpose LLM
- Ollama Llama3 8B - Advanced reasoning
- Ollama CodeLlama 13B - Code generation
- Ollama DeepSeek Coder - Specialized coding
- Exchange Rates API - Real-time currency data
- Blockchain Info - Bitcoin/crypto analytics
- Coinbase Prices - Cryptocurrency pricing
- Pokemon Data - Complete Pokemon database
- Cat Facts - Animal knowledge base
- Dog Images - Image dataset API
- Breaking Bad Quotes - TV show dataset
- Rick & Morty Characters - Character database
- TheMealDB - Recipe database
- Fruityvice - Nutrition information
- CocktailDB - Drink recipes
- Chuck Norris Jokes - Humor dataset
- Kanye Quotes - Celebrity quotes
- Dice Roll - Random number generation
- Coin Flip - Decision tools
- Corporate BS Generator - Business text
- Yes/No API - Decision helper
- Useless Facts - Trivia data
- Numbers Trivia - Mathematical facts
- IP Geolocation - Location services
- REST Countries - Country information
- Nominatim Geocoding - Address lookup
- Geonames - Geographic database
- NASA APOD - Space imagery
- NASA Asteroids - Astronomy data
- NASA Mars Rover - Mars mission data
- World Bank Indicators - Economic data
- COVID Stats - Pandemic tracking
- Census Demographics - Population data
- UK Police Data - Crime statistics
- Data.gov - US government data
- EU Open Data - European datasets
- FRED Economic - Federal Reserve data
- IMF Financial - International finance
- Wikipedia Search - Encyclopedia
- Wikipedia Dumps - Full text access
- Wikidata Search - Structured knowledge
- Wikidata SPARQL - Query endpoint
- DBpedia SPARQL - Semantic web data
- PubMed Search - Medical research
- arXiv Papers - Scientific preprints
- Crossref Metadata - Academic citations
- Semantic Scholar - AI research papers
- Open Library - Book information
- Archive.org - Digital library
- Gutenberg Books - Public domain texts
- Universities Search - Educational institutions
- Dictionary API - Word definitions
- Word Synonyms - Thesaurus
- Language Detection - Auto-detect languages
- Lorem Ipsum - Placeholder text
- Gender Prediction - Name analysis
- Datamuse - Word associations
- Unsplash Photos - Stock photography
- TMDB Movies - Film database
- OMDB Movies - Movie information
- Genius Lyrics - Song lyrics
- MusicBrainz - Music metadata
- Pexels Media - Stock media
- Advice Slip - Random advice
- ZenQuotes - Inspirational quotes
- Quotable - Famous quotations
- Newton Math - Mathematical operations
- Periodic Table - Chemical elements
- Sunrise/Sunset - Solar calculations
- Space People - Astronaut tracker
- Random User Data - Person generator
- UUID Generator - Unique identifiers
- QR Code Generator - QR creation
- Base64 Encode/Decode - Data encoding
- Color Info - Color information
- Placeholder Images - Image placeholders
- HTTPBin - HTTP testing
- Postman Echo - API testing
- IP Address Lookup - IP information
- Random Data Generator - Test data
- Trivia Questions - Quiz content
- Joke API - Humor content
- Bored Activities - Activity suggestions
- Zippopotam - Postal code lookup
# Your agent describes what it needs in natural language
response = marketplace.shop(
task="I need tools to analyze customer sentiment from reviews",
auto_extract_capabilities=True # LLM extracts: ["analytics", "nlp", "sentiment"]
)
# Returns: Sentiment analysis APIs, NLP datasets, review RAGs# Execute discovered products immediately
result = marketplace.execute(
app_id="sentiment_analyzer",
task="Analyze this review: 'Great product!'",
inputs={"text": "Great product!"}
)
# Returns: Structured sentiment analysis with citations- Automatic cost tracking per product
- Latency monitoring
- Success rate analytics
- Citation and provenance tracking
- JWT token authentication (HMAC-SHA256)
- API key management (SHA-256 hashed)
- Rate limiting (tier-based: 100/1000/10000 req/hr)
- bcrypt password hashing (cost 12)
- Audit trails for all executions
Add your RAG, dataset, MCP server, or API to the marketplace:
{
"id": "my_customer_rag",
"name": "Customer Support RAG System",
"description": "Pre-built RAG for customer service documentation",
"category": "rag_systems",
"capabilities": ["retrieval", "qa", "customer_support"],
"product_type": "rag",
"cost_est_usd": 0.01,
"latency_est_ms": 200,
"executor_type": "http_api",
"executor_url": "https://your-server.com/rag/query",
"test_inputs": {"query": "How do I reset my password?"}
}- List free products for exposure
- Charge per-use for premium products
- Track usage analytics
- Build reputation through trust scores
- Framework: FastAPI (async, high-performance Python)
- Database: PostgreSQL 15 (with Alembic migrations)
- Search: FAISS vector similarity (384-dim embeddings)
- LLM: Ollama phi3.5:3.8b (capability extraction)
- Auth: JWT (python-jose) + bcrypt password hashing
- Validation: Pydantic v2 (type-safe request/response)
- Containers: Docker + Docker Compose
- Orchestration: Multi-container setup (API + PostgreSQL)
- Monitoring: Health check endpoints + automated testing
- Scaling: Stateless API design (horizontal scaling ready)
- Embeddings: sentence-transformers (all-MiniLM-L6-v2)
- Vector Search: FAISS CPU (Facebook AI Similarity Search)
- LLM Integration: Ollama API (local model execution)
- Semantic Matching: Cosine similarity scoring
AI agents describe their needs, marketplace returns ranked recommendations.
Request:
{
"task": "I need to build a customer support chatbot with FAQ capabilities",
"auto_extract_capabilities": true,
"max_results": 10,
"required_capabilities": ["qa", "retrieval"], // Optional
"client_id": "my_ai_agent_v1" // Optional tracking
}Response:
{
"matches": [
{
"app_id": "faq_rag_system",
"name": "FAQ RAG System",
"description": "Pre-built retrieval system for frequently asked questions",
"score": 0.95,
"capability_coverage": 1.0,
"semantic_relevance": 0.89,
"why_matched": "Perfect capability match for QA and retrieval"
}
],
"total_searched": 91,
"llm_extracted_capabilities": ["qa", "retrieval", "chatbot", "support"]
}Execute a discovered product with specific inputs.
Request:
{
"app_id": "faq_rag_system",
"task": "How do I reset my password?",
"inputs": {
"query": "password reset procedure"
},
"require_citations": true
}Response:
{
"app_id": "faq_rag_system",
"ok": true,
"output": {
"answer": "To reset your password: 1. Go to login page, 2. Click 'Forgot Password'...",
"citations": ["https://docs.example.com/password-reset"],
"retrieved_at": "2026-02-08T12:34:56Z",
"confidence": 0.92
},
"provenance": {
"sources": ["Internal FAQ database"],
"method": "vector_similarity_search"
},
"run_id": 12345
}# Tests all 91 products automatically
python scripts/api_health_check.pyExpected Output:
================================================================================
AXIOMEER PRODUCTION READINESS - API HEALTH CHECK
================================================================================
Loading API manifests...
Found 91 APIs to test
Testing APIs...
[1/91] Testing exchange_rates... ✓ PASS (324ms)
[2/91] Testing blockchain_info... ✓ PASS (456ms)
...
[91/91] Testing ollama_deepseek_coder... ✓ PASS (19ms)
================================================================================
SUMMARY
================================================================================
Total APIs: 91
Passed: 91 (100.0%)
Failed: 0 (0.0%)
================================================================================
PRODUCTION READINESS ASSESSMENT
================================================================================
✓ ALL APIS PASSING - PRODUCTION READY
# Run test suite
pytest tests/ -v
# Run specific category
pytest tests/test_auth.py -v
pytest tests/test_rate_limit.py -v# Database Configuration
DB_PASSWORD=<43-char-cryptographic-secret>
DATABASE_URL=postgresql://axiomeer:${DB_PASSWORD}@localhost:5432/axiomeer
# Authentication (REQUIRED in production)
AUTH_ENABLED=true
JWT_SECRET_KEY=<43-char-cryptographic-secret>
JWT_ACCESS_TOKEN_EXPIRE_MINUTES=60
# Rate Limiting
RATE_LIMIT_ENABLED=true
RATE_LIMIT_FREE_TIER_PER_HOUR=100
RATE_LIMIT_STARTER_TIER_PER_HOUR=1000
RATE_LIMIT_PRO_TIER_PER_HOUR=10000
# Semantic Search
SEMANTIC_SEARCH_ENABLED=true
SEMANTIC_SEARCH_MODEL=all-MiniLM-L6-v2
# LLM (Ollama)
OLLAMA_URL=http://localhost:11434/api/generate
OLLAMA_MODEL=phi3.5:3.8b- JWT tokens with HMAC-SHA256 signing
- API keys with SHA-256 hashing
- bcrypt password hashing (cost factor 12)
- Token expiration (configurable, default 60 min)
- Tier-based rate limiting
- Usage tracking per user
- API key management (create/revoke)
- Fine-grained access control
- Secure PostgreSQL configuration
- Docker network isolation
- No hardcoded secrets (environment-based)
- Fail-fast security validation
- Audit trails (all executions logged)
- Citation tracking (provenance for AI outputs)
- Cost tracking (transparent pricing)
- GDPR-ready (user data management)
- API Documentation: See API Reference
- Product Manifests:
manifests/categories/ - Source Code:
src/marketplace/ - Tests:
tests/
Issue: "Not authenticated"
# Solution: Include API key or JWT token
curl -H "X-API-Key: axm_xxxxx" http://localhost:8000/execute ...
# OR
curl -H "Authorization: Bearer <token>" http://localhost:8000/execute ...Issue: "Rate limit exceeded"
# Solution: Wait for rate limit window to reset (shown in error)
# OR upgrade to higher tier
# Check current limits:
curl -H "X-API-Key: axm_xxxxx" http://localhost:8000/auth/meIssue: Products not loading
# Solution: Restart API container to reload manifests
docker-compose restart api
# Verify products loaded
curl http://localhost:8000/apps | jq 'length' # Should return 91- Product discovery and ranking
- 91 products across 14 categories
- Authentication and rate limiting
- Semantic search with FAISS
- Docker deployment
Want to list your RAG, dataset, MCP server, or API?
- Create a product manifest (JSON)
- Implement the executor interface
- Submit via pull request
- Pass quality verification
- Go live on the marketplace!
Template:
{
"id": "your_product_id",
"name": "Your Product Name",
"description": "Clear description of what your product does",
"category": "rag_systems|datasets|apis|mcp_servers|documents",
"capabilities": ["capability1", "capability2"],
"product_type": "rag|dataset|api|mcp|document",
"freshness": "static|daily|realtime",
"citations_supported": true,
"latency_est_ms": 200,
"cost_est_usd": 0.01,
"executor_type": "http_api|grpc|local",
"executor_url": "https://your-endpoint.com/api",
"test_inputs": {"param": "example_value"}
}- Report bugs via GitHub Issues
- Submit feature requests
- Contribute code improvements
- Improve documentation
Proprietary - © 2026 Axiomeer
Contact: [[email protected]]
Built with:
- FastAPI - Modern Python web framework
- PostgreSQL - Reliable database
- FAISS - Efficient vector similarity search
- Sentence Transformers - Semantic embeddings
- Ollama - Local LLM execution
- Docker - Containerization
Made for the AI Agent community
Empowering AI agents to access the tools they need, when they need them.

