(评论)
(comments)
原始链接: https://news.ycombinator.com/item?id=39678783
是的,确实如此——许多科学学科要求研究人员公布他们的方法和研究结果,并接受审查。 然而,IMET 不一定是一项科学事业,所以我并不是专门指它,而是指需要严谨和透明的更广泛的学术界。 虽然随着时间的推移,预测评估技术和方法论确实已经成熟和发展,但我想说它们在机器学习和人工智能方面遥遥领先。 机器学习和人工智能非常有价值,但我不记得曾听过任何人提出“人工智能可以解决气候变化”或任何与你提到的荒谬标题相近的建议。 作者将两者混为一谈,感觉很不厚道。 也许这位特定作者的意图是强调消费者层面的天气预报和科学层面的预测评估之间的差异,而引用的标题则强调了一般讨论中可能不合理的关联,但需要更清楚地说明这种联系。 也许只有我这么认为,但每当我看到机器学习、神经网络等与气象学相关的内容时,我就会想起过度概括、过度简单化或其他误导性的说法,比如“神经网络说...... “同样,这些技术对于理解大气中的某些子系统以及确定不同气候指标和可观测值之间的关系非常有价值,但如果过度扩展到更广泛的政策背景,那就是危险的领域。 这就像建议卷积神经网络可以取代政治学、经济学、哲学、心理学和社会学等潜在申请人,而我可以想象一个机器学习可以彻底改变气象预报评估和其他科学领域的世界,我怀疑它是否有能力 完全替换这些字段。 关于归属,本文犯了流行媒体中常见的典型错误,即介绍了发表研究的作者的隶属关系,但忽略了介绍或讨论资金来源的细节(如果适用,至少如果出版物 承认与资金来源有关的潜在利益冲突)。 是的,这是科学新闻界的一个典型失误,但我们也请记住,西方学术界对资金来源(相对于作者身份)的重视。 作者身份
Rather than letting some aggregator simplify the weather for you, you can just look at the raw data yourself: https://weather.cod.edu/forecast/
For big events, the media briefings by the National Weather Service are good resources. But they often stop the briefings early; a few weeks ago we had a high probability of a large amount of snowfall. The updates stopped at like 9AM, the snow was forecast to start around 1PM. Watching the short term models showed that the probability for snow was decreasing (NYC was just below the snow/rain line), and indeed we got pretty much no snow. (It snowed, but it didn't accumulate and the change to rain happened early.) To be fair, the briefing from the weather service said that the changeover time between snow and rain was very uncertain and that it would be the difference between a little rain and major snow event. But my point is, you can always go get yourself some more data; the closer you get to the event, the more accurate the forecast is.
(I don't know if any of you watch Skip Talbot, but he was looking at helicity swaths on the HRRR a few hours out, found a big one, and where HRRR predicted the strong rotation in the storm is pretty much exactly the path of a major tornado. HRRR is never going to be perfect, but it is right a lot.)
reply