从空气中提取DNA——室内场所人类居住的DNA证据
Extracting DNA from the air – DNA evidence of human occupancy in indoor premises

原始链接: https://www.nature.com/articles/s41598-023-46151-7

这份研究汇编突出了DNA转移的复杂性及其在法医学中的意义。研究考察了皮肤脱落和皮肤细胞扩散的速率,揭示了DNA易于脱落和转移的程度。研究调查了潜伏DNA的检测、角质细胞溶解对DNA完整性的影响,以及通过触摸甚至空气颗粒转移DNA的情况。 一些研究探讨了DNA在不同表面的持久性以及防护措施在减少污染方面的有效性。文中探讨了“脱落者状态”的概念,承认个体沉积的DNA量有所不同。此外,还考察了污染在法医DNA分析中的作用,包括实验室环境和犯罪现场调查人员等潜在来源。 文章讨论了DNA证据的解读,尤其是在复杂混合物或少量样本的情况下,强调了概率基因分型系统和贝叶斯网络方法的必要性。还提到了环境DNA(eDNA)空气采样等新兴技术,为法医调查开辟了新的途径,同时也引发了伦理方面的关注。

Hacker News 最新 | 过去 | 评论 | 提问 | 展示 | 招聘 | 提交 登录 从空气中提取DNA——室内场所人类居住的DNA证据 (nature.com) 11 分,来自 punnerud,2 小时前 | 隐藏 | 过去 | 收藏 | 2 条评论 dc396 20 分钟前 | 下一条 [–] https://www.imdb.com/title/tt0119177/ 比较保守。不过电影很棒。 回复 treetalker 21 分钟前 | 上一条 [–] 摘录摘要:> 在超清洁的法医实验室的空气和灰尘样本中也观察到可检测水平的DNA,这可能会污染案例样本。这对刑事辩护律师来说是个好消息。 回复 加入我们 6 月 16-17 日在旧金山参加 AI 初创公司学校! 指南 | 常见问题 | 列表 | API | 安全 | 法律 | 申请 YC | 联系我们 搜索:

原文
  • Roberts, D. & Marks, R. The determination of regional and age variations in the rate of desquamation: A comparison of four techniques. J. Invest. Dermatol. 74, 13–16. https://doi.org/10.1111/1523-1747.ep12514568 (1980).

    Article  CAS  PubMed  Google Scholar 

  • Milstone, L. M. Epidermal desquamation. J. Dermatol. Sci. 36, 131–140. https://doi.org/10.1016/j.jdermsci.2004.05.004 (2004).

    Article  PubMed  Google Scholar 

  • Candi, E., Schmidt, R. & Melino, G. The cornified envelope: A model of cell death in the skin. Nat. Rev. Mol. Cell Biol. 6, 328–340. https://doi.org/10.1038/nrm1619 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Sun, T. T. & Green, H. Differentiation of the epidermal keratinocyte in cell culture: Formation of the cornified envelope. Cell 9, 511–521. https://doi.org/10.1016/0092-8674(76)90033-7 (1976).

    Article  CAS  PubMed  Google Scholar 

  • Lidwell, O. M., Mackintosh, C. A. & Towers, A. G. The evaluation of fabrics in relation to their use as protective garments in nursing and surgery. II. Dispersal of skin organisms in a test chamber. J. Hyg. (Lond.) 81, 453–469. https://doi.org/10.1017/s002217240002533x (1978).

    Article  CAS  PubMed  Google Scholar 

  • Mackintosh, C. A., Lidwell, O. M., Towers, A. G. & Marples, R. R. The dimensions of skin fragments dispersed into the air during activity. J. Hyg. (Lond.) 81, 471–479. https://doi.org/10.1017/s0022172400025341 (1978).

    Article  CAS  PubMed  Google Scholar 

  • Burrill, J., Daniel, B. & Frascione, N. Illuminating touch deposits through cellular characterization of hand rinses and body fluids with nucleic acid fluorescence. Forensic Sci. Int. Genet. 46, 102269. https://doi.org/10.1016/j.fsigen.2020.102269 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Kanokwongnuwut, P., Kirkbride, K. P. & Linacre, A. Detection of latent DNA. Forensic Sci. Int. Genet. 37, 95–101. https://doi.org/10.1016/j.fsigen.2018.08.004 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Burrill, J., Rammenou, E., Alawar, F., Daniel, B. & Frascione, N. Corneocyte lysis and fragmented DNA considerations for the cellular component of forensic touch DNA. Forensic Sci. Int. Genet. 51, 102428. https://doi.org/10.1016/j.fsigen.2020.102428 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Hammer, U., Bulnheim, U., Karstädt, G., Meissner, D. & Wegener, R. Zur DNA-Typisierung übertragener Hautzellen nach körperlicher Gewalt. Rechtsmedizin 7, 180–183. https://doi.org/10.1007/s001940050010 (1997).

    Article  Google Scholar 

  • Herber, B. & Herold, K. DNA typing of human dandruff. J. Forensic Sci. 43, 648–656 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Finnebraaten, M., Granér, T. & Hoff-Olsen, P. May a speaking individual contaminate the routine DNA laboratory?. Forensic Sci. Int. Genet. Suppl. Ser. 1, 421–422. https://doi.org/10.1016/j.fsigss.2007.10.030 (2008).

    Article  Google Scholar 

  • Port, N. J., Bowyer, V. L., Graham, E. A., Batuwangala, M. S. & Rutty, G. N. How long does it take a static speaking individual to contaminate the immediate environment?. Forensic Sci. Med. Pathol. 2, 157–163. https://doi.org/10.1007/s12024-006-0004-z (2006).

    Article  PubMed  Google Scholar 

  • Rutty, G. N., Hopwood, A. & Tucker, V. The effectiveness of protective clothing in the reduction of potential DNA contamination of the scene of crime. Int. J. Legal Med. 117, 170–174. https://doi.org/10.1007/s00414-002-0348-1 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Thornbury, D., Goray, M. & van Oorschot, R. A. H. Indirect DNA transfer without contact from dried biological materials on various surfaces. Forensic Sci. Int. Genet. 51, 102457. https://doi.org/10.1016/j.fsigen.2020.102457 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Thornbury, D., Goray, M. & van Oorschot, R. A. H. Transfer of DNA without contact from used clothing, pillowcases and towels by shaking agitation. Sci. Justice 61, 797–805. https://doi.org/10.1016/j.scijus.2021.10.005 (2021).

    Article  PubMed  Google Scholar 

  • Puliatti, L., Handt, O. & Taylor, D. The level of DNA an individual transfers to untouched items in their immediate surroundings. Forensic Sci. Int. Genet. 54, 102561. https://doi.org/10.1016/j.fsigen.2021.102561 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Locard, E. The analysis of dust traces. Part I. Am. J. Police Sci. 1, 276–298. https://doi.org/10.2307/1147154 (1930).

    Article  Google Scholar 

  • Toothman, M. H. et al. Characterization of human DNA in environmental samples. Forensic Sci. Int. 178, 7–15. https://doi.org/10.1016/j.forsciint.2008.01.016 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Amankwaa, A. O. & McCartney, C. The effectiveness of the current use of forensic DNA in criminal investigations in England and Wales. Wiley Interdiscip. Rev. Forensic Sci. 3, e1414. https://doi.org/10.1002/wfs2.1414 (2021).

    Article  CAS  Google Scholar 

  • Secretary of State for the Home Department (2013). Serious and Organised Crime Strategy.UK: The Stationery Office. https://www.gov.uk/government/publications/serious-organised-crime-strategy.

  • Watkins, D. R. L., Myers, D., Xavier, H. E. & Marciano, M. A. Revisiting single cell analysis in forensic science. Sci. Rep. 11, 7054. https://doi.org/10.1038/s41598-021-86271-6 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • van Oorschot, R. A., Ballantyne, K. N. & Mitchell, R. J. Forensic trace DNA: A review. Investig. Genet. 1, 14. https://doi.org/10.1186/2041-2223-1-14 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Oorschot, R. A. H., Szkuta, B., Meakin, G. E., Kokshoorn, B. & Goray, M. DNA transfer in forensic science: A review. Forensic Sci. Int. Genet. 38, 140–166. https://doi.org/10.1016/j.fsigen.2018.10.014 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Gill, P. DNA evidence and miscarriages of justice. Forensic Sci. Int. 294, e1–e3. https://doi.org/10.1016/j.forsciint.2018.12.003 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Fonneløp, A. E., Johannessen, H., Egeland, T. & Gill, P. Contamination during criminal investigation: Detecting police contamination and secondary DNA transfer from evidence bags. Forensic Sci. Int. Genet. 23, 121–129. https://doi.org/10.1016/j.fsigen.2016.04.003 (2016).

    Article  CAS  PubMed  Google Scholar 

  • Reither, J. B. et al. Investigation into the prevalence of background DNA on flooring within houses and its transfer to a contacting surface. Forensic Sci. Int. 318, 110563. https://doi.org/10.1016/j.forsciint.2020.110563 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Proff, C., Schmitt, C., Schneider, P. M., Foerster, G. & Rothschild, M. A. Experiments on the DNA contamination risk via latent fingerprint brushes. Int. Congress Ser. 1288, 601–603. https://doi.org/10.1016/j.ics.2005.10.053 (2006).

    Article  Google Scholar 

  • van den Berge, M., Ozcanhan, G., Zijlstra, S., Lindenbergh, A. & Sijen, T. Prevalence of human cell material: DNA and RNA profiling of public and private objects and after activity scenarios. Forensic Sci. Int. Genet. 21, 81–89. https://doi.org/10.1016/j.fsigen.2015.12.012 (2016).

    Article  CAS  PubMed  Google Scholar 

  • Vandewoestyne, M. et al. Sources of DNA contamination and decontamination procedures in the forensic laboratory. Int. J. Forensic Pract. Res. https://doi.org/10.4172/2157-7145.S2-001 (2011).

    Article  Google Scholar 

  • Witt, N. et al. An assessment of air as a source of DNA contamination encountered when performing PCR. J. Biomol. Tech. 20, 236–240 (2009).

    PubMed  PubMed Central  Google Scholar 

  • Gill, P., Benschop, C., Buckleton, J., Bleka, Ø. & Taylor, D. A review of probabilistic genotyping systems: EuroForMix, DNAStatistX and STRmix™. Genes (Basel) 12, 1559. https://doi.org/10.3390/genes12101559 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Budowle B., M. T. R., Niezgoda S. J., Brown B. L. CODIS and PCR-based short tandem repeat loci: Law enforcement tools. In Second European symposium on human identification. 73–88 (1998).

  • Bleka, Ø., Storvik, G. & Gill, P. EuroForMix: An open source software based on a continuous model to evaluate STR DNA profiles from a mixture of contributors with artefacts. Forensic Sci. Int. Genet. 21, 35–44. https://doi.org/10.1016/j.fsigen.2015.11.008 (2016).

    Article  CAS  PubMed  Google Scholar 

  • Gill, P., Bleka, Ø. & Egeland, T. Does an English appeal court ruling increase the risks of miscarriages of justice when complex DNA profiles are searched against the national DNA database?. Forensic Sci. Int. Genet. 13, 167–175. https://doi.org/10.1016/j.fsigen.2014.07.015 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Taylor, D., Curran, J. M. & Buckleton, J. Importance sampling allows H(d) true tests of highly discriminating DNA profiles. Forensic Sci. Int. Genet. 27, 74–81. https://doi.org/10.1016/j.fsigen.2016.12.004 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Good, I. J. Probability and the Weighing of Evidence. Vol. 26 (C. Griffin London, 1950).

  • Bleka, Ø., Bouzga, M., Fonneløp, A. & Gill, P. dnamatch2: An open source software to carry out large scale database searches of mixtures using qualitative and quantitative models. Forensic Sci. Int. Genet. Suppl. Ser. 6, e404–e406. https://doi.org/10.1016/j.fsigss.2017.09.160 (2017).

    Article  Google Scholar 

  • Abdel Hady, R. H., Thabet, H. Z., Ebrahem, N. E. & Yassa, H. A. Thermal effects on DNA degradation in blood and seminal stains: Forensic view. Acad. Forensic Pathol. 11, 7–23. https://doi.org/10.1177/1925362121998547 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Hall, A., Sims, L. M. & Ballantyne, J. Assessment of DNA damage induced by terrestrial UV irradiation of dried bloodstains: Forensic implications. Forensic Sci. Int. Genet. 8, 24–32. https://doi.org/10.1016/j.fsigen.2013.06.010 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Asari, M. et al. Assessment of DNA degradation of buccal cells under humid conditions and DNA repair by DOP-PCR using locked nucleic acids. Leg. Med. (Tokyo) 35, 29–33. https://doi.org/10.1016/j.legalmed.2018.09.005 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Goray, M. & van Oorschot, R. A. The complexities of DNA transfer during a social setting. Leg. Med. (Tokyo) 17, 82–91. https://doi.org/10.1016/j.legalmed.2014.10.003 (2015).

    Article  CAS  PubMed  Google Scholar 

  • Szkuta, B. et al. Assessment of the transfer, persistence, prevalence and recovery of DNA traces from clothing: An inter-laboratory study on worn upper garments. Forensic Sci. Int. Genet. 42, 56–68. https://doi.org/10.1016/j.fsigen.2019.06.011 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Taylor, D., Abarno, D., Rowe, E. & Rask-Nielsen, L. Observations of DNA transfer within an operational Forensic Biology Laboratory. Forensic Sci. Int. Genet. 23, 33–49. https://doi.org/10.1016/j.fsigen.2016.02.011 (2016).

    Article  CAS  PubMed  Google Scholar 

  • Lapointe, M., Rogic, A., Bourgoin, S., Jolicoeur, C. & Séguin, D. Leading-edge forensic DNA analyses and the necessity of including crime scene investigators, police officers and technicians in a DNA elimination database. Forensic Sci. Int. Genet. 19, 50–55. https://doi.org/10.1016/j.fsigen.2015.06.002 (2015).

    Article  CAS  PubMed  Google Scholar 

  • Mercer, C., Taylor, D., Henry, J. & Linacre, A. DNA accumulation and transfer within an operational forensic exhibit storeroom. Forensic Sci. Int. Genet. 62, 102799. https://doi.org/10.1016/j.fsigen.2022.102799 (2023).

    Article  CAS  PubMed  Google Scholar 

  • van Oorschot, R. A. & Jones, M. K. DNA fingerprints from fingerprints. Nature 387, 767. https://doi.org/10.1038/42838 (1997).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Lowe, A., Murray, C., Whitaker, J., Tully, G. & Gill, P. The propensity of individuals to deposit DNA and secondary transfer of low level DNA from individuals to inert surfaces. Forensic Sci. Int. 129, 25–34. https://doi.org/10.1016/s0379-0738(02)00207-4 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Phipps, M. & Petricevic, S. The tendency of individuals to transfer DNA to handled items. Forensic Sci. Int. 168, 162–168. https://doi.org/10.1016/j.forsciint.2006.07.010 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Fonneløp, A. E., Ramse, M., Egeland, T. & Gill, P. The implications of shedder status and background DNA on direct and secondary transfer in an attack scenario. Forensic Sci. Int. Genet. 29, 48–60. https://doi.org/10.1016/j.fsigen.2017.03.019 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Goray, M. & van Oorschot, R. A. H. Shedder status: Exploring means of determination. Sci. Justice 61, 391–400. https://doi.org/10.1016/j.scijus.2021.03.004 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Johannessen, H., Gill, P., Roseth, A. & Fonneløp, A. E. Determination of shedder status: A comparison of two methods involving cell counting in fingerprints and the DNA analysis of handheld tubes. Forensic Sci. Int. Genet. 53, 102541. https://doi.org/10.1016/j.fsigen.2021.102541 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Kanokwongnuwut, P., Martin, B., Kirkbride, K. P. & Linacre, A. Shedding light on shedders. Forensic Sci. Int. Genet. 36, 20–25. https://doi.org/10.1016/j.fsigen.2018.06.004 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Lacerenza, D. et al. A molecular exploration of human DNA/RNA co-extracted from the palmar surface of the hands and fingers. Forensic Sci. Int. Genet. 22, 44–53. https://doi.org/10.1016/j.fsigen.2016.01.012 (2016).

    Article  CAS  PubMed  Google Scholar 

  • Van Hoofstat, D. E., Deforce, D. L., Hubert De Pauw, I. P. & Van den Eeckhout, E. G. DNA typing of fingerprints using capillary electrophoresis: Effect of dactyloscopic powders. Electrophoresis 20, 2870–2876. https://doi.org/10.1002/(sici)1522-2683(19991001)20:14 (1999).

    Article  PubMed  Google Scholar 

  • Castillo, J. A., Staton, S. J., Taylor, T. J., Herckes, P. & Hayes, M. A. Exploring the feasibility of bioaerosol analysis as a novel fingerprinting technique. Anal. Bioanal. Chem. 403, 15–26. https://doi.org/10.1007/s00216-012-5725-0 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tovey, E. R., Kemp, A. S., Almqvist, C., Sharland, A. & Marks, G. B. Do immune responses to inhaled skin flakes modulate the expression of allergic disease?. Clin. Exp. Allergy 37, 1199–1203. https://doi.org/10.1111/j.1365-2222.2007.02770.x (2007).

    Article  CAS  PubMed  Google Scholar 

  • Evett, I. W., Gill, P. D., Jackson, G., Whitaker, J. & Champod, C. Interpreting small quantities of DNA: The hierarchy of propositions and the use of Bayesian networks. J. Forensic Sci. 47, 520–530 (2002).

    Article  PubMed  Google Scholar 

  • Cook, R., Evett, I. W., Jackson, G., Jones, P. J. & Lambert, J. A. A model for case assessment and interpretation. Sci. Justice 38, 151–156. https://doi.org/10.1016/s1355-0306(98)72099-4 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Gill, P. et al. DNA commission of the International society for forensic genetics: Assessing the value of forensic biological evidence—Guidelines highlighting the importance of propositions. Part II: Evaluation of biological traces considering activity level propositions. Forensic Sci. Int. Genet. 44, 102186. https://doi.org/10.1016/j.fsigen.2019.102186 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Biedermann, A. & Taroni, F. Bayesian networks for evaluating forensic DNA profiling evidence: A review and guide to literature. Forensic Sci. Int. Genet. 6, 147–157. https://doi.org/10.1016/j.fsigen.2011.06.009 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Making sense of Forensic Genetics, https://senseaboutscience.org/activities/making-sense-of-forensic-genetics/ (2017).

  • Whitmore, L. et al. Inadvertent human genomic bycatch and intentional capture raise beneficial applications and ethical concerns with environmental DNA. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-023-02056-2 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  • InnovaPrep. AirPrep™ Cub Sampler User Guide models ACD210 and ACD200. (2021).

  • Clare, E. L. et al. eDNAir: Proof of concept that animal DNA can be collected from air sampling. PeerJ 9, e11030. https://doi.org/10.7717/peerj.11030 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Duhaime M. B., Cable R. (2019). DNA Extraction from Filters using QIAgen DNeasy and QIAshredder V.1. https://doi.org/10.17504/protocols.io.jx5cpq6.

  • 联系我们 contact @ memedata.com