The Biology of B-Movie Monsters
BY | Michael C. LaBarbera
SESSION 1: Biology and Geometry Collide!
Size has been one of the most popular themes in monster movies, especially those from my favorite era, the 1950s. The premise is invariably to take something out of its usual context--make people small or something else (gorillas, grasshoppers, amoebae, etc.) large--and then play with the consequences. However, Hollywood's approach to the concept has been, from a biologist's perspective, hopelessly naïve. Absolute size cannot be treated in isolation; size per se affects almost every aspect of an organism's biology. Indeed, the effects of size on biology are sufficiently pervasive and the study of these effects sufficiently rich in biological insight that the field has earned a name of its own: "scaling."
Similarly, volumes are proportional to length cubed, so the new volume is not twice the old, but two cubed or eight times the old volume (2L x 2L x 2L). As "size" changes, volumes change faster than areas, and areas change faster than linear dimensions.
The biological significance of these geometric facts lies in the observations that related aspects of an organism's biology often depend on different geometric aspects. Take physical forces.
The same dependence on different aspects of geometry holds for functional relationships. The forces that can be produced by a muscle or the strength of a bone are in each case proportional to their cross-sectional areas; the weight of an animal is proportional to its volume.
Physiological relationships are not exempt. The rate at which oxygen can be extracted from the air is proportional to the surface area of the lungs; the rate at which food is digested and absorbed to the surface area of the gut; the rate at which heat is lost to the surface area of the body: but the rate at which oxygen or food must be supplied or the rate at which heat is produced is proportional to the mass (i.e., volume) of the animal. If an animal performs well at any given size, size change alone implies that these related functions must change at different rates, since their underlying geometric bases change at different rates; if the animal is to be functional at the changed size, either functional relations must change or shape must change. Monster movies have extensively explored these scaling relationships, albeit usually incorrectly; knowing the true relationships often puts the entire movie into a new light.
Let's start small and work our way up.
Stop the projector! Time for a little analysis.
When the Incredible Shrinking Man stops shrinking, he is about an inch tall, down by a factor of about 70 in linear dimensions. Thus, the surface area of his body, through which he loses heat, has decreased by a factor of 70 x 70 or about 5,000 times, but the mass of his body, which generates the heat, has decreased by 70 x 70 x 70 or 350,000 times. He's clearly going to have a hard time maintaining his body temperature (even though his clothes are now conveniently shrinking with him) unless his metabolic rate increases drastically.
Luckily, his lung area has only decreased by 5,000-fold, so he can get the relatively larger supply of oxygen he needs, but he's going to have to supply his body with much more fuel; like a shrew, he'll probably have to eat his own weight daily just to stay alive. He'll also have to give up sleeping and eat 24 hours a day or risk starving before he wakes up in the morning (unless he can learn the trick used by hummingbirds of lowering their body temperatures while they sleep).
Because of these relatively larger surface areas, he'll be losing water at a proportionally larger rate, so he'll have to drink a lot, too. We see him drink once in the movie--he dips his hand into a puddle and sips from his cupped palm. The image is unremarkable and natural, but unfortunately wrong for his dimensions: at his size surface tension becomes a force comparable to gravity. More likely, he'd immerse his hand in the pool and withdraw it coated with a drop of water the size of his head. When he put his lips to the drop, the surface tension would force the drop down his throat whether or not he chooses to swallow.
As for the contest with the spider, the battle is indeed biased, but not the way the movie would have you believe. Certainly the spider has a wicked set of poison fangs and some advantage because it wears its skeleton on the outside, where it can function as armor. But our hero, because of his increased metabolic rate, will be bouncing around like a mouse on amphetamines. He wouldn't struggle to lift the sewing needle--he'd wield it like a rapier because his relative strength has increased about 70 fold. The forces that a muscle can produce are proportional to its cross-sectional area (length squared), while body mass is proportional to volume (length cubed). The ratio of an animal's ability to generate force to its body mass scales approximately as 1/length; smaller animals are proportionally stronger. This geometric truth explains why an ant can famously life 50 times its body weight, while we can barely get the groceries up the stairs; were we the size of ants, we could lift 50 times our body weight, too. As for the Shrinking Man, pity the poor spider.
Miniature people confront Galilean science!
Understanding scale is key to the problems raised in another classic of life on the small side. Dr. Cyclops (1940) is a tale of a mad scientist who retires to a remote island to perfect his secret machine, a device that emits atomic rays (five years before the bomb!), shrinking anything in their path. When his solitude is disturbed by interlopers (I'm convinced he mistook them for a granting agency's site-inspection team), he shrinks them; the rest of the movie follows the battles between the giant doctor and his miniaturized visitors.
Of course, as an old gem of black humor notes, it's not the fall that hurts you, it's the sudden stop at the end. A falling object acquires kinetic energy (KE=1/2mv2). That kinetic energy, proportional to the velocity squared, must be dissipated to bring the object to a halt. Here's where being small is a good thing. Not only do smaller objects fall more slowly but, because of the squared-velocity term in the kinetic energy relationship, there is much less energy to be dissipated on impact and thus less injury. (Those of you who vaguely remember Galileo dropping things from the Tower of Pisa may be bothered by the preceding. Galileo used iron balls, where the drag is trivial compared to the force due to gravity, and the fall was not long enough for the balls to achieve any significant fraction of their terminal velocity.)
Indeed, sufficiently small animals cannot be hurt in a fall from any height: A monkey is too big, a squirrel is on the edge, but a mouse is completely safe. The mouse-sized people in Dr. Cyclops could have leapt off the tabletop with a cry of "Geronimo!" secure in the knowledge that they were too small to be hurt.
Rachel Welch bombarded by molecules!
First, how do they see? The crew spend time enjoying the scenery as they cruise the arterial highways, but even at their largest size their eyeballs are much smaller than the wavelength of visible light. Even hard ultraviolet radiation is too long in wavelength to be useful. Perhaps they are using X-rays, but if so, their hapless host has more to worry about than a blood clot.
In another scene, Raquel Welch floats in a capillary, controlling the submarine remotely with a panel strapped to her waist. Remember that molecules are in constant, vigorous motion, driven by thermal energy. Trillions of molecules collide with your skin each second; all of these collisions average out to produce what we macroscopically call pressure. As objects get smaller, this random bombardment still averages out over time, but at any instant more molecules may collide with one side of the object than the other, pushing the object momentarily to one side.
This phenomenon, first described by Scottish botanist Robert Brown in 1827, is known as "Brownian motion"; the pollen grains he observed through his microscope appeared to "dance" randomly in the water. Our hemonauts in Fantastic Voyage, ten times smaller than Brown's pollen grains, are going to experience the same random and continuous jostling, rather like an endless journey on a train running on bad tracks. Raquel Welch would have been lucky to keep her hands in the vicinity of the control panel, much less actually operate the controls.
Splitting the molecule?
Other movies have played with the theme of tiny people in an otherwise normal world, including The Incredible Shrinking Woman (1981) and Honey, I Shrunk the Kids (1989). But none of these movies ever deals with the problem of what happens to the object's mass when it shrinks. I can imagine two ways to shrink an object. One would be to start removing molecules, perhaps halving the number in each cycle of shrinkage. But molecules are integer quantities; sooner or later, this strategy is going to lead to half a molecule, which won't work. (Particularly for biological objects. Remember, each cell in your body only has two copies of your genetic information, one in each strand of the DNA in your chromosomes.)
Another way to shrink an object would be to decrease the distance between an atom's nucleus and its electron cloud-atoms are, after all, mostly empty space. I'm not enough of a physicist to have any intuition about what this would do to basic physics and chemistry, but one result of this strategy would be to leave the object's mass unchanged. If volume decreases but mass does not, then density must increase. The shrinkage is sufficiently limited in these movies that we don't have to worry about dealing with miniature black holes, but an object the size of a cell but the mass of a submarine--as in Fantastic Voyage--is going to pass through the table, the floor, and the earth's mantle like a hot knife through butter.
In The Incredible Shrinking Man (1957), the hero is exposed to radioactive toxic waste and finds himself growing smaller and smaller. He is lost to family and friends while fending off the household cat and must make his own way in a world grown monstrously large. He forages food from crumbs and drinks from puddles of condensation. In one famous scene, he defends himself against a house spider by using an abandoned sewing needle, which he has to struggle to lift.
As J.B.S. Haldane put it in his classic essay, "On Being the Right Size," "You can drop a mouse down a thousand-yard mine shaft; and, on arriving on the bottom, it gets a slight shock and walks away....A rat is killed, a man broken, a horse splashes." Haldane was being quite literal.
These facts were known to our ancestors, who used this aspect of scaling to gruesome effect--a common strategy during medieval sieges was to take a carcass of a horse, let it ripen for a few days in the sun, and then catapult it over the walls of the besieged town. On impact, the carcass would indeed splash, spreading contagion throughout the city.
A second, more subtle, problem pervades the Kong movies. The strength of a bone is approximately proportional to its cross-sectional area; this is simply another way of saying that there is a maximum mechanical stress, or force per unit area, that a bone (or any other material object, for that matter) can withstand. The load the bone must bear is proportional to the mass of an animal. With an increase in size but no change in shape, the load on the bone will increase in proportion to the increase in volume (length cubed), but the cross-sectional area of the bone will only increase as length squared. Eventually, the animal's bones will break under its own weight.
But my colleague Andrew Biewener (formerly at the University of Chicago, now at Harvard's Concord Field Station) has revisited this question with surprising results. At least for the long bones in the limbs of mammals, the changes in shape that accompany evolutionary changes in size are not sufficient to compensate for the increased loads. Since all bone has virtually the same breaking stress, this implies that larger animals increasingly push the limits of their own skeletons' strength. However, Biewener's direct measurements of bone deformations as an animal walks or runs show that the safety factor (the ratio of breaking stress to working stress) only ranges from three to five. This is remarkably risky design--most things that humans build have safety factors from ten to several hundred. Biewener has looked at animals from chipmunks to elephants and finds that the safety factor is constant across this 25,000-fold size range--scaling has been sidestepped. This result is achieved by a combination of the shape changes in the bones described by Galileo and changes in the behaviors of the animals, particularly adjustments in posture to ensure that the loads the bone must bear are directed along the bones to minimize bending.
But clearly there are mammals larger than 10-20 kilograms--you and I, to name two. Indeed, empirical measurements of the working stresses in bones indicate a very different story. The bars on the graph indicate the working stress levels in the bones of a variety of mammals from mice to elephants; hatched bars are indirect estimates from the measures of the forces the animal exerts on the ground, white bars are direct measurements from strain gauges directly attached to the animals' long bones. As is apparent, bone stress does not grow as the cube root of body mass. Indeed, the working stress in the bones seems to be independent of body size, running about a fourth to a third the breaking stress for all mammals. In a sense, what we have here is nature's "design principle" for mainstream skeletons: all have evolved to have a safety factor of three to five.
The other end of the size spectrum--the commonplace become gigantic--is much more the norm in monster movies and is certainly what first comes to mind when you think about the genre. The archetype is, of course, King Kong. There have been a host of Kong movies, but the best are clearly the original (1933) with Fay Wray, the 1976 remake with Jeff Bridges and Jessica Lange, and a 1949 clone entitled Mighty Joe Young (whose special effects, by Ray Harryhausen, are breathtaking). Yet all underestimate the vulnerability of large animals.
I am, by training, an invertebrate zoologist, and virtually all of my research has focused on the biomechanics of marine invertebrates. Thus I note with considerable joy that Hollywood has not forgotten our slimy relatives. My all-time favorite for quality of special effects is It Came from Beneath the Sea (1955), in which a giant deep-sea octopus, unable to capture its normal prey after it becomes radioactive from eating fish contaminated in an atomic bomb test, invades shallow waters looking for lunch. After snacking on a couple of freighters, the monster discovers San Francisco, where he adds a few police cars, railroad box cars, and the clock tower of the Ferry Building to his diet. The most famous (and visually striking) scene occurs as the monster reaches up out of San Francisco Bay, entwines its tentacles around the Golden Gate Bridge, and pulls the bridge down.
This moment is the creature's undoing, although the movie seems not to realize this fact. After this point, the creature becomes strangely passive, especially in light of its previous rampages. The octopus grabs an attacking submarine, but simply holds it, making no attempt to crush it or bite it. The octopus ignores a scuba diver who swims directly in front of its eye, even when the diver shoots a spear into its brain (which can't have done much damage even if it did actually penetrate the cartilaginous brain case). Finally, the monster is dispatched with explosives and the movie ends. Pulpo, anyone?
However, before pulling the bridge down, the monster extends his tentacles about halfway up the support towers. The top of the support towers stand 500 feet above the deck, itself 220 feet above the high-water mark. At one atmosphere for every 33 feet and an elevation of 470 feet, that's a total pressure of about 14 atmospheres (209 pounds per square inch). For the first time in its life, there was no surrounding mass of water to offset the pressure increase and the full load of this pressure would act to distend its arteries.
The evidence clearly points to the poor cephalopod suffering a sudden and massive cerebral hemorrhage from this excess pressure just as it rips down the Golden Gate Bridge. The subsequent passivity of the giant octopus now makes perfect sense--its higher faculties were gone and the only responses it made were due to peripheral reflexes, grabbing the submarine in response to tactile stimulation, twitching when hit with the diver's spear. Rather takes the edge off the human's "heroic" actions at the end of the movie, doesn't it?
Let's turn to one of my favorite giant insect flicks.
Tokyo falls to giant saturnid!
For high camp, you can't do better than Mothra (1962). Two six-inch tall women are kidnapped from a Pacific island by a showman who plans to make his fortune by exhibiting them. The dastardly deed causes a giant egg to hatch into a giant caterpillar that swims across the Pacific, devouring everything in its path, and getting bigger by the minute. After reaching Japan and crushing a large portion of Tokyo, it crawls up a radio tower, spins a cocoon, and a few days later emerges as a moth with the wingspan of a couple of 747s. The downdraft of those wings completes the destruction of Tokyo: buildings are blown down, cars fly through the air. The authorities admit defeat and the tiny women are brought to the airport where the giant moth lands; after the ladies climb aboard, the monster flies off over the Pacific, never to be seen again.
Enlarging an insect to this size raises other interesting problems that don't arise with large vertebrates. Take the respiratory system. Insects have a remarkably efficient respiratory system with a basic design completely different from what we possess. Rather than inhale air, extract oxygen in the lungs, and transport it in the blood as we do, insects have a branched, tree-like network of tubes called trachea that extend through the body and open at one end to the atmosphere. Large insects may actively ventilate the outer portions of this network, but the inner regions (the smaller tubes) are not ventilated; instead, oxygen simply diffuses down the tubes.
It's a remarkably efficient system: The transport of respiratory gases is free, increased demand for oxygen at any location automatically increases the local rate of supply by increasing the concentration gradient of oxygen, and the system can be easily modified to better deliver oxygen to particular regions of the body. (For example, in the flight muscles of insects where the oxygen demand is extreme, the tips of individual tracheal tubes actually penetrate the cell membrane, directly delivering oxygen to the mitochondria in the muscle cell's cytoplasm.)
The upshot of all this is that Mothra is going to have to add a lot of tracheal tubes to maintain a sufficient oxygen supply. Of course, the more of its volume that is tracheal tubes, the less is biomass that needs oxygen, but this implies that although Mothra may be heavy (because it's big), its density is going to be very low--about the same as your average cotton ball.
This insight into Mothra's physiology eliminates two other problems. Although wearing one's skeleton on the outside has distinct mechanical advantages (as we'll see shortly), large insects are prone to a mode of failure called buckling. If Mothra had really been just a scaled-up moth, its legs would have collapsed when it landed. Second, Mothra's wings are in the same proportion to its body as the moths that bat their heads against the lights outside your door. Total lift generation is proportional to the area of the wings; if mass increased in proportion to volume, Mothra would have to walk home. If Mothra could get airborne, it would produce a sizable downdraft, although probably not anywhere near enough to blow over buildings, but its low density implies that it is going to be at the mercy of the winds. I sure hope those six-inch ladies got home.
Another giant bug movie is worthy of note. Them! (1954) opens in New Mexico with a house trailer that has been ripped open by some unknown agent; the only survivor among the occupants is a six-year-old girl so traumatized that she can give no clue as to what transpired. Soon we discover that the trailer was attacked by ants, but they're not the ants that usually visit you at a picnic. These ants stand 12 feet high, swollen to giant size by the effects of the radiation from the Trinity atomic bomb tests in 1945.
These super-ants have several problems, although neither they nor the humans seem to appreciate it. First, let's start with the vulnerability of an insect the size of a small elephant. The giant insects don't look terribly vulnerable--small arms and machine guns don't seem to have much effect on them. Part of this relative invulnerability is certainly
due to the fact that arthropods wear their skeleton on the outside, where it can act as armor, but I'd argue that the military is using the wrong weapons and aiming at the wrong targets.
So where are they vulnerable? The secret lies in the exoskeleton. Hollow tubes are mechanically very efficient structures, especially for resisting bending--the nastiest way you can load a structure. (Don't believe me? Take a toothpick and break it. Easy, wasn't it? But you broke it by bending it, so take another toothpick, grab one end in each hand, and pull straight along the length of the toothpick. Pretty tough in pure tension, isn't it? Now take another toothpick and grab it between the thumb and first fingers of each hand, with your thumbs a half inch or less apart, and try to break the toothpick by pushing along the length of the toothpick. Pretty tough in compression, too.)
Resistance to bending is maximized if the material is distributed far away from the middle of the beam, so tubes are very efficient, but thin-walled tubes have a peculiar vulnerability. Take a soda straw and push on the ends. At first the soda straw will bend smoothly, but at some point it will suddenly fly out of your hands; if you retrieve the straw, you'll find it has a kink in it and, if you load it again, it has lost much of its previous resistance to loading. This mode of failure (known as "local buckling") is peculiar to thin-walled structures. Now, if our giant ants are scaled-up versions of their normal relatives, the length, diameter, and thickness of the exoskeleton in their legs will all be scaled up by the same linear factor, but their body weight, again, will be scaled up by that linear factor cubed. These giant insects are clearly pushing the buckling strength of their legs.
Notice that local buckling is always an inwards kink in the tube, so any focused insult from the outside is going to tend to trigger local buckling. Here's the trick to defeating the giant ants. You don't want a rifle, you want a pile of bricks and a good pitching arm. One well-hurled brick hitting a leg and--plink!--the leg goes into local buckling and collapses, increasing the load on the remaining legs. Two more bricks and you've taken out all the legs on one side; all the bug can do is scrabble in circles. Three more bricks and the giant insect is completely immobilized.
There's another mechanical problem that these giant bugs must face, and this one is even more interesting because it has both biological and financial implications. All animals with rigid skeletons face the problem of the transmission of forces between the elements of their skeleton. Because these boundaries between elements are usually the place where movement of skeletal elements occurs (i.e., joints), this boundary must withstand the forces carried by the rigid skeletal elements and do so while maintaining a low friction. In less formal terms, a joint must not fail under the applied loads, and must transmit those loads while remaining free to rotate.
Here vertebrates have a real advantage over arthropods. Because our skeleton is internal, the ends of the bones can articulate on enlarged, rounded surfaces--think of the articulation between your hip and your femur. The large surface area helps keep the mechanical stresses low, and the joint can be lubricated because it is surrounded by living tissue. In arthropods, because the skeleton is external to the living tissue, large rounded ends are out of the question. The best an arthropod could do would be to have one tube of its exoskeleton butt up against another tube--imagine two tea cups, edge to edge--and even that wouldn't work because any rotation around the joint would end up with the two tubes contacting each other at a point, which would both yield very high stresses and would be mechanically unstable.
One estimate suggests that mammalian joints are called on to withstand forces as much as 100 times the animal's body weight during normal locomotion. (In humans, the peak forces on the knee during running can be 15 times body weight.) Arthropods, even though they have more legs than mammals, have it even worse; their joints may see forces as great as 3,000 times body weight, 30 times higher than mammals. Because joint contact areas are much lower in arthropods than vertebrates, the difference in stresses must be much greater. Now we come to the heart of the matter. As you scale up an ant, body mass must increase faster than joint surface area--indeed, the stress on the joint should increase in direct proportion to size.
These giant bugs have a problem, and I can think of only one way out for them. The joints must be made of some very hard material (to minimize wear) with good mechanical properties, and only one material will fit the bill--diamond. You scoff? Diamond is only carbon, and living things have a lot of experience in manipulating carbon. So why didn't the characters in Them! notice that the giant insects had diamond-lined joints? In Them!, you'll remember, the giant ants are finally defeated by burning out their nest with flamethrowers. As I said, diamond is just a form of carbon, and like the more prosaic forms will burn quite nicely. The evidence literally went up in smoke.
Sometimes, there is evidence of real sophistication in monster/science-fiction movies; for the very best, I recommend the Stephen Spielberg classics Jurassic Park (1994) and ET (1982). Although very different in tone and subject matter, the two share remarkable insights into biology.
When Jurassic Park was first released, I went to see the film with a paleontologist colleague and our respective wives. As the rest of the audience cringed and shrieked, my colleague and I excitedly whispered comments to each other--"All right! Classic large predator behavior patterns!", "Look at that! They got the bipedal kinematics just right!" Folks in adjacent seats were not amused. The Tyrannosaurus and Gallimimus sequences are truly breathtaking. If you want to see our best guess as to how dinosaurs moved and behaved, see this film; Spielberg had a number of vertebrate paleontologists and biologists as consultants, and he obviously listened to them.
I have only two quibbles with this film and they are both minor ones. First, the title--although I suppose that Spielberg was stuck with the title Michael Crichton used for the novel. Except for the Brachiosaurus (and the Dilophosaurus, which was a complete fiction), all of the dinosaurs in Jurassic Park actually lived in the Cretaceous--but what's 100 million years among friends?
My second quibble has a bit more substance, for it concerns the posture of the Tyrannosaurus. For most of this century, Tyrannosaurus has been reconstructed as standing with its body vertical, crouched on its hind limbs--the Tyrannosaurus in Disney's Fantasia (1940) is a good example of this "classical" view, one probably unconsciously modeled after our own bipedal posture. More careful consideration of the biomechanics of large carnosaurs--the position of the center of gravity, the widespread presence of calcified tendons in the backbone, the massive tail--led in the 1980s to a radically new vision of the carriage in these animals, one where the body and tail were held horizontally and more or less rigidly balanced over the hind legs. At first sight this reconstruction is jarring--rather like an ambulatory seesaw--but a bit of reflection will convince you that this posture is more, not less stable than our own precarious position perched above our hind limbs, although almost certainly less maneuverable in turns (as David Carrier has shown). This is the view portrayed in Jurassic Park, and the efficacy of this posture is apparent and seems quite natural when the T. rex in the film is seen in motion. As I mentioned in Session 3, Andrew Biewener has made a career of studying the biomechanics of locomotion in vertebrates, particularly the effects of changing body size on locomotory design and behavior. One of his primary conclusions is that to avoid fracturing their own bones, very large animals must maintain their legs straight, with all of the long bones in a single line when the limb bears the animal's weight. Here's where Jurassic Park goofed, although it's a pretty minor error. Watch the climactic final scene in the lobby of the lodge, where the Tyrannosaurus and the Velociraptors settle their differences. You'll see that the Tyrannosaurus keeps his knees bent, and the upper portion of the leg (the thigh or drumstick, depending on which analogy you like better) is always at least 30° off the line defined by the lower portion of the leg--more like the posture of a large bird than a mammal. It now seems much more likely that an animal the size of this beauty must have kept both the upper and lower portions of the limb in line when that leg was weight- bearing; this would have given Jurassic Park's T. rex another foot or two of elevation, and, if you can visualize the stride in your imagination, made it even more intimidating.
Alien Manipulates Human Emotions!
Another Steven Spielberg blockbuster, ET (1982), exhibits an entirely different kind of sophistication. (Okay. So maybe ET isn't a "monster" movie, but bear with me--the point is interesting.) The first time the audience gets a good look at ET, there's an audible sigh of "How cute!" that sweeps through the movie theater. You do indeed think ET is cute, but why do you think he's cute?
During Mickey Mouse's maturation from his first appearance as Steamboat Willy to his glory days with the Mickey Mouse Club, his head and eyes became larger and his snout proportionally smaller; he juvenilized, presumably increasing his marketability.
The trick to ET's charm may seem trivial and obvious, but it really is neither. As a counterpoint to ET, consider King Kong Lives (1986), a sequel to the 1976 version of King Kong. The premise of the movie is that Kong survives his fall from the World Trade Center (patently impossible, as we saw in Session 3) and is fitted with an artificial heart the size of a Volkswagen, restoring him to his full imposing health. Kong eventually meets a female version of himself captured in the Indo-Pacific, they fall in love, one thing leads to another, and soon Mrs. Kong is expecting.
The scene where Kong Jr. is born was fascinating, but not for anything that happened on the screen. Clearly the directors expected Kong Jr. to be an object of sympathy to the audience, but when Junior appeared I clearly remember that the audience around me looked puzzled, not charmed. The explanation is simple. On screen, the relative sizes of Daddy, Mommy, and Baby Kong were more or less correct, but Junior was a man in a gorilla suit and the audience's hindbrain knew by the body proportions that this was no newborn, regardless of what the story line or the relative sizes said. We are not fooled that easily.
COPYRIGHT
Copyright 2003 The University of Chicago.