(评论)
(comments)
原始链接: https://news.ycombinator.com/item?id=38545522
然而,关于 NP 与 NEXP 的争论,让我澄清几点:
首先,我不确定你是否在开玩笑,但是计算复杂性理论中有一个既定的概念,称为“选择后放大”,它专门处理由于 NP 完整性而只能有效处理输入子集的情况 并涉及在传统决策算法中添加验收测试阶段以获得放大器。 这些技术允许有效处理以前难以处理的候选输入子集。 然而,由于围绕选择标准(例如组合爆炸)的问题,我不建议仅仅依靠这些类型子集的有希望的发现来解决实践中的 NP 完全问题,除非得到严格的理论分析和考虑的支持。
关于 NEXPOUNDING,应该指出的是,使用 NEXP 时间资源“决定”财产的定义与能够对所有可能的候选者进行搜索并验证结果的定义之间存在重大差异。 前者仅指对给定输入进行二元是/否判断,而后者则需要提供所有令人满意的输入的全面列表,这可能是一个完全不同的挑战。
最后,关于 NP 搜索比 P 大小证明更长的假设可能会因计算设备本质上固有的实际限制而遇到挑战,这是事实,但是,任何人都不太可能能够理解和记住 即使它低于 P 界限(特别是考虑到人类思维只能同时保留有限数量的信息),整个符号链的长度相当大。 Thus, while we cannot yet conclude that there are zero length proofs out there, the likelihood of discovering such proofs or even substantially shorter (than what current computing technology permits) proofs through an exhaustive search mechanism within foreseeable future remains infinitesimally low.
“通过详尽的搜索来寻找简短的证据。” 算法推理满足了人类无限且无法满足的好奇心。
> Tao then kicked off an effort to formalize the proof in Lean, a programming language that helps mathematicians verify theorems. In just a few weeks, that effort succeeded. Early Tuesday morning of December 5, Tao announced that Lean had proved the conjecture without any “sorrys” — the standard statement that appears when the computer can’t verify a certain step. This is the highest-profile use of such verification tools since 2021, and marks an inflection point in the ways mathematicians write proofs in terms a computer can understand. If these tools become easy enough for mathematicians to use, they might be able to substitute for the often prolonged and onerous peer review process, said Gowers.
reply