关于AI评估
About AI Evals

原始链接: https://hamel.dev/blog/posts/evals-faq/

这篇帖子总结了常见的AI评估问题。RAG 并没有过时,它只是需要超越简单的向量搜索,采用针对特定应用的有效检索方法。模型选择不如错误分析重要;首先关注理解错误模式。自定义标注工具通过提供量身定制的界面和工作流程,显著加快迭代速度。优先选择二元评估而非李克特量表,以便更清晰的思考和更轻松的标注。通过简化测试用例并识别初始故障点来调试多轮对话。 在初步提示修复后,针对持续存在的问题自动化评估器,从廉价的基于代码的检查开始,然后再使用复杂的LLM作为裁判的评估器。指定一位领域专家(“仁慈的独裁者”)以确保一致的质量标准。现有的评估工具缺乏AI辅助、自定义评估器和支持自定义标注应用程序的API。合成数据应使用维度进行结构化,以针对可能的错误模式。评估策略源于错误分析,而非预定的查询分类。60%-80%的开发时间应用于错误分析和评估。

The Hacker News discussion revolves around AI Evals - the systematic process of measuring LLM performance. The original article emphasizes practical advice, but commentators raise key points: * **Tooling:** Open-source evaluation platforms like Opik, Promptfoo, and Laminar are recommended to avoid building custom solutions from scratch. While Label Studio is a popular annotation tool, custom interfaces may be necessary for complex, task-specific problems. * **Model Selection:** Rather than fixating on model selection, error analysis should be the first step. While newer models may show improvements in general, real-world performance in specific domains can vary, requiring careful evaluation and evidence. * **Evals Focus:** It's important to focus evals on the "least trustworthy" responses to improve efficiency. * **Definition:** AI Evals are systematic frameworks for measuring LLM performance against defined benchmarks, typically involving test cases, metrics, and human judgment to quantify capabilities, identify failure modes, and track improvements across model versions.
相关文章

原文
联系我们 contact @ memedata.com