| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() |
原始链接: https://news.ycombinator.com/item?id=38759877
在针对特定语言(例如本例中的土耳其语)实现 RAG 方面,主要涉及使用支持该语言的 RAG 库、在该语言的文本语料库上训练和微调 RAG 模型,以及处理特定于语言的细微差别(例如词法) 和语法。 许多流行的 RAG 库(例如 PyTorch FairSeq 和 LLAP-NL)提供对多种语言的支持,并允许轻松集成到具有不同专业水平的应用程序中。 此外,针对特定语言的专用 RAG 库(例如 TLR 的 Retriever-Generator 和 SURGE)可以提供更高的性能和准确性。 最终,选择正确的 RAG 实现或开发适合特定语言需求的定制 RAG 实现需要仔细考虑训练数据可用性、应用程序上下文、计算资源限制和成本考虑等因素。
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() |
You still do RAG. Llamaindex is still the best option that I know of. Most of the startups that have working products are likely using llamaindex. All of the ones that say they are training on documents are actually using RAG.
Test it out. If it really and truly doesn't work, search for a script that creates question and answer pairs automatically with gpt-4. Then try using that for qLoRA. I have never heard of anyone successfully using that for a private document knowledgebase though. Only for skills like math, reasoning, Python, etc. I think the issue is that you need a LOT of data and it needs to repeat concepts or any facts you need to learn many, many times in different supporting ways.
What absolutely does not work is trying to just feed a set of documents into fine tuning. I personally have proven that dozens of times because I had a client who is determined to do it. He has been mislead.
What it will do is learn the patterns that are in those documents.
reply