每个程序员都应该知道的 50 种算法(第二版)
50 Algorithms Every Programmer Should Know (Second Edition)

原始链接: https://www.oreilly.com/library/view/50-algorithms-every/9781803247762/

以下是我们在第 11 章中学到的有关 Docker 和 Kubernetes 的内容: 1. 容器化支持微服务架构,通过运行特定应用程序的隔离实例的容器化工作负载,可以实现更大的灵活性和更快的开发速度。 然而,管理多个容器可能会变得复杂且难以管理。 这就是 Docker 作为轻量级解决方案的用武之地,它可以简化容器的构建、运输和运行。 2. Docker CLI 有助于轻松创建、修改、启动、停止、移动、删除、检查、推送、拉取和搜索任何来源的映像。 3. 图像层可以有效更新图像组件,而无需重建整个图像堆栈。 Kubernetes provides automation capabilities while maintaining control over these managed containers through YAML configuration files. Kubernetes 通过 Deployments 和 DaemonSets 采用声明式配置和资源分配,取代了手动配置的 pod。 它还支持自动部署和回滚,同时通过 ReplicationController 最大限度地减少停机时间。 此外,服务的使用使得在更大的整体系统中更容易找到单个 Pod。 自动缩放可根据指定指标(例如 CPU 利用率或剩余低于阈值的存储容量)自动添加和删除 Pod,从而有助于优化资源使用。 此外,持久卷为持久敏感用户数据提供了长期、可靠的解决方案。 最后,Kubernetes 可以使用 Ingress 对象连接同一物理机和不同集群上不同节点的容器。 为了允许来自外部客户端的容器化工作负载之间进行网络连接,必须同时分配服务帐户和虚拟 IP 地址; 然后,Ingress 规则将流量从外部服务引导到集群中。 第 11 章至第 13 章深入介绍了这些概念,使读者能够全面了解这一日益流行的技术套件背后的基础知识。 这些工具为简化应用程序部署、测试、调试和维护提供了巨大的希望,并且能够根据需求快速扩展,从而节省成本并缩短延迟时间。 此外,由于软件开发人员只需为该过程中实际使用的服务器资源付费,而不是提前预留资源,因此公司可以通过减少浪费的支出来节省资金。 最后,由于 Kubernetes 动态分配工作负载分配和资源访问,因此可以在同一台计算机上的多个并发操作之间共享这些相同的服务器资源。

两本看似不同的书籍封面设计的相似性让我们怀疑负责制作它们的出版公司之间是否存在联系,考虑到其中讨论的主题的性质,这引起了人们的关注。 此外,针对理想原型的双曲线标题和清单的趋势导致经验丰富的开发人员感到沮丧,他们认为重点应该转向实际工作环境中的实际应用,而不是旨在给他人留下深刻印象的假设场景,而不是解决现实中固有的复杂性。 -世界问题。 此外,它引发了人们对将一卷标为“算法:第 1 部分”与被动替代方案背后的选择的好奇心,引发了对其有效性和潜在接受度的质疑,因为读者似乎对通常与夸大主张相关的重复比喻越来越失望。 从本质上讲,这些因素结合在一起创造了一个多方面的问题,需要在当代出版业中进行更多的思考和思考。
相关文章

原文

Book description

Delve into the realm of generative AI and large language models (LLMs) while exploring modern deep learning techniques, including LSTMs, GRUs, RNNs with new chapters included in this 50% new edition overhaul Purchase of the print or Kindle book includes a free eBook in PDF format.

Key Features

  • Familiarize yourself with advanced deep learning architectures
  • Explore newer topics, such as handling hidden bias in data and algorithm explainability
  • Get to grips with different programming algorithms and choose the right data structures for their optimal implementation

Book Description

The ability to use algorithms to solve real-world problems is a must-have skill for any developer or programmer. This book will help you not only to develop the skills to select and use an algorithm to tackle problems in the real world but also to understand how it works.

You'll start with an introduction to algorithms and discover various algorithm design techniques, before exploring how to implement different types of algorithms, with the help of practical examples. As you advance, you'll learn about linear programming, page ranking, and graphs, and will then work with machine learning algorithms to understand the math and logic behind them.

Case studies will show you how to apply these algorithms optimally before you focus on deep learning algorithms and learn about different types of deep learning models along with their practical use.

You will also learn about modern sequential models and their variants, algorithms, methodologies, and architectures that are used to implement Large Language Models (LLMs) such as ChatGPT.

Finally, you'll become well versed in techniques that enable parallel processing, giving you the ability to use these algorithms for compute-intensive tasks.

By the end of this programming book, you'll have become adept at solving real-world computational problems by using a wide range of algorithms.

What you will learn

  • Design algorithms for solving complex problems
  • Become familiar with neural networks and deep learning techniques
  • Explore existing data structures and algorithms found in Python libraries
  • Implement graph algorithms for fraud detection using network analysis
  • Delve into state-of-the-art algorithms for proficient Natural Language Processing illustrated with real-world examples
  • Create a recommendation engine that suggests relevant movies to subscribers
  • Grasp the concepts of sequential machine learning models and their foundational role in the development of cutting-edge LLMs

Who this book is for

This computer science book is for programmers or developers who want to understand the use of algorithms for problem-solving and writing efficient code. Whether you are a beginner looking to learn the most used algorithms concisely or an experienced programmer looking to explore cutting-edge algorithms in data science, machine learning, and cryptography, you'll find this book useful. Python programming experience is a must, knowledge of data science will be helpful but not necessary.

联系我们 contact @ memedata.com