PSOS-C 和完整的归因链
PSOS-C and the Full Attribution Chain

原始链接: https://www.aivojournal.org/closing-the-loop/

## PSOS-C:衡量人工智能可见性的财务影响 提示空间占用评分 (PSOS™) 最初量化了品牌在人工智能助手回复中的可见性。现在,PSOS-C 通过一个完全可审计的归因链,将这种可见性与*可衡量的业务成果*联系起来。与仅仅“被看到”不同,PSOS-C 证明了人工智能曝光如何驱动用户参与、转化,并最终带来收入。 PSOS-C 使用加权模型,考虑可见性、参与概率、转化率、时间衰减(考虑人工智能模型更新)和归因置信度。2025年第三季度的数据显示出显著差异:PSOS 变化了 6-7%,而 PSOS-C 仅变化了 4%,突显了其过滤掉无效可见性的能力。 这使得能够计算“面临风险的收入”(RaR),提供一个治理级别的财务指标。汽车行业的实证验证显示,PSOS-C 变化与收入波动之间存在 0.42 的相关性。AIVO 提供了一个强大的保证框架,具有独立的审计和透明的报告,确保数据的完整性和符合行业标准。PSOS-C 将人工智能可见性从营销指标转变为对企业具有财务重要性的因素。

Hacker News 新闻 | 过去 | 评论 | 提问 | 展示 | 工作 | 提交 登录 PSOS-C 和完整的归因链 (aivojournal.org) 3 分,由 businessmate 发表于 2 小时前 | 隐藏 | 过去 | 收藏 | 1 条评论 businessmate 发表于 2 小时前 [–] 2025年初,提示空间占用评分 (PSOS™) 引入了一种可重复的方法来衡量品牌在AI助手回复中的呈现方式。它将可见性确立为品牌资产的可量化、可审计维度。PSOS-C 是该指标的加权转换版本,它将 PSOS 的范围扩展到曝光之外。它通过透明、可审计的归因链,将助手级别的可见性与可衡量的用户行为和经过验证的财务结果联系起来。PSOS-C 闭合了被看到和创造价值之间的循环——将AI可见性转化为治理级别的财务指标。回复 考虑申请YC的2026年冬季批次!申请截止日期为11月10日 指南 | 常见问题 | 列表 | API | 安全 | 法律 | 申请YC | 联系 搜索:
相关文章

原文

Introducing PSOS-C and the Full Attribution Chain

AIVO Journal • October 2025

Executive Summary

In early 2025, the Prompt-Space Occupancy Score (PSOS™) introduced a reproducible way to measure how brands appear within AI assistant responses. It established visibility as a quantifiable, auditable dimension of brand equity.

PSOS-C, the conversion-weighted evolution of that metric, extends PSOS beyond exposure. It connects assistant-level visibility to measurable user actions and verified financial outcomes through a transparent, auditable attribution chain. PSOS-C closes the loop between being seen and creating value—transforming AI visibility into a governance-grade financial indicator.

Comparison of PSOS Shift and PSOS-C Shift Metrics for Q3 2025, showing PSOS Shift at approximately 6-7% and PSOS-C Shift at around 4%.

1 From Visibility to Value

AI assistants now mediate intent and purchase decisions. Traditional analytics track clicks; assistants generate decisions. PSOS-C quantifies that causal chain through three observable stages:

StageSignal CapturedTypical Data SourceGovernance Value
ExposureFrequency and rank of brand mentions in assistant responsesPrompt-audit logs (ChatGPT o1-preview, Gemini 1.5 Pro, Claude 3.5 Sonnet etc.)Proof of discoverability
EngagementFollow-on navigation, search continuation, or voice action by userOpt-in telemetry panels (tracking user interactions with consent) and synthetic testsBehavioral validation
ConversionVerified transaction or lead event linked to exposureFirst-party analytics or CRM systemsFinancial attribution

2 The PSOS-C Model

The PSOS-C model quantifies how assistant exposure translates into measurable outcomes by weighting each interaction stage:

PSOS-C=∑i(wi×Ei×Ci×di×αi)PSOS-C=i∑​(wi​×Ei​×Ci​×di​×αi​)

VariableDefinitionRangeSource
wiBaseline visibility weight (share of prompt appearances)0–1AIVO Prompt Audit Logs
EiEngagement coefficient (follow-on action probability)0–1Telemetry Panels
CiConversion probability (verified event / exposure)0–1Brand Analytics Feeds
diTemporal decay (adjusts for AI model retrain half-life, typically 21–35 days)> 0AIVO Decay Model v3.5
αiAttribution confidence (Bayesian posterior probability of causation)0–1AIVO Monte Carlo Attribution Engine

All parameters are version-controlled and documented in AIVO Standard Methodology v3.5 §2.3.


3 Empirical Validation

A Q3 2025 automotive benchmark examined 3,284 prompt-conversion pairs across ChatGPT 5 and Gemini 2.5 Pro, covering seven global brands in North America and Europe across retail and leasing contexts.

  • Mean PSOS shift post-retrain: –6.8 %
  • Mean PSOS-C shift (conversion-weighted): –4.1 %
  • Correlation between PSOS-C delta and revenue delta (30-day window): r = 0.42 (95 % CI ± 0.05)

The reduction from 6.8 % to 4.1 % demonstrates that PSOS-C filters non-performative visibility, isolating economically relevant exposure.

Figure 1. PSOS vs PSOS-C Shift (Q3 2025)
(bar chart: PSOS 6.8 % → PSOS-C 4.1 % reduction)


4 The Attribution Chain

Observation → Engagement → Conversion → Decay → Audit

  1. Observation — Prompt sampling across assistants; results timestamped and cryptographically hashed.
  2. Engagement Capture — Anonymized panels record user actions within 30 seconds of exposure.
  3. Conversion Linkage — First-party analytics confirm downstream events; Monte Carlo simulation estimates counterfactual baseline.
  4. Decay Adjustment — Exponential half-life model aligns visibility persistence to retrain cadence.
  5. Audit Publication — All logs and model versions archived on Zenodo under DOI 10.5281/zenodo.AIVO-v3-5-PSOS-C.
A five-stage flow showing how PSOS-C links visibility to verified outcomes: prompt sampling (Observation) → user interaction capture (Engagement) → validated downstream events (Conversion) → retrain-aware decay modeling (Decay) → transparent archival and verification (Audit).

5 From Risk to Financial Materiality

Integration of conversion data allows direct estimation of Revenue at Risk (RaR):

RaR=ΔPSOS-C×VEFRaR=ΔPSOS-C×VEF

where VEF (Visibility Elasticity Factor) is the regression coefficient linking visibility to revenue.
In the automotive dataset, VEF = 0.62, implying that a 10 % visibility loss predicts a 6.2 % short-term revenue contraction. For listed entities, such a decline can trigger reporting under SEC and ESMA materiality thresholds.


6 Governance and Assurance Framework

PSOS-C audits operate under the AIVO Assurance Charter, aligned with ISO/IEC 17029 and 42001.
Standard-setting and audit execution are structurally separated: only independent, AIVO-accredited verifiers may certify PSOS-C scores.

Deliverables include:

  • Attribution Report — visibility-to-conversion chain with confidence intervals.
  • RaR Statement — quantified financial exposure.
  • Assistant Drift Log — record of retrains and visibility deltas.

Brands can engage accredited auditors via aivostandard.org/audit to implement PSOS-C monitoring and reporting.


7 Closing the Loop

PSOS-C completes the progression begun by PSOS earlier this year:

  • PSOS measured presence; PSOS-C measures performance.
  • PSOS showed where brands appear; PSOS-C proves why it matters.

As AI assistants become the default interface for consumer decisions, brands must quantify their AI-era visibility with the same discipline as financial reporting.
Adopting PSOS-C ensures that AI visibility is measured, monetized, and governed with audit-grade rigor.


AIVO Journal — Foundational Concept No. 8
Closing the Loop: Introducing PSOS-C and the Full Attribution Chain

联系我们 contact @ memedata.com