天气预报未来2:我们最先进的天气预报模型
WeatherNext 2: Our most advanced weather forecasting model

原始链接: https://blog.google/technology/google-deepmind/weathernext-2/

## WeatherNext 2:利用人工智能进行更准确的预测 WeatherNext 2 是一种新型人工智能模型,通过从单一起点生成*数百*种可能的结果来显著提高天气预测的准确性——关键在于包含最坏情况的场景,以便更好地做好准备。它利用一种新颖的“功能生成网络”(FGN),仅使用一个 TPU,就能在不到一分钟内实现更高分辨率的逐小时预报,远超传统超级计算机模型。 FGN 的工作原理是学习预测单个天气要素(“边际”)例如温度和风,然后巧妙地预测复杂的相互关联的系统(“联合”)——例如区域性热浪或风电场输出——*基于*这些边际数据。这使得预测更加真实和相互关联。 在 99.9% 的预测变量和时间范围内(长达 15 天),WeatherNext 2 优于其前代产品,提供更准确、更有用的天气情报。

## WeatherNext 2:谷歌高级天气预报模型 – 摘要 谷歌的新WeatherNext 2模型承诺在天气预报方面取得显著进展,速度更快(快8倍),并且能够生成数百种可能的情景。这是通过一种新颖的训练方法实现的,该方法利用“CRPS”目标,鼓励生成多样化的集合预报。 讨论强调,虽然总体预报准确性在过去几十年里有所提高,但单个预测仍然可能不可靠。用户分享了关于不一致性和特定地点准确性问题的故事,并指出理解模型局限性以及利用像Windy.com和NOAA的HRRR等资源获取更高分辨率数据的重要性。 对话还涉及了天气预测的历史挑战,提到了二战时期的预报以及即使不完美,*拥有*预报的内在价值。除了短期预测之外,用户还讨论了人工智能改善长期气候预测的潜力,以及更好地整合个人气压计等数据源的需求。最终,该模型的数据现在可以通过Google Cloud获得,为搜索、Gemini、Pixel Weather和Google Maps中的预报提供支持。
相关文章

原文

Weather predictions need to capture the full range of possibilities — including worst case scenarios, which are the most important to plan for.

WeatherNext 2 can predict hundreds of possible weather outcomes from a single starting point. Each prediction takes less than a minute on a single TPU; it would take hours on a supercomputer using physics-based models.

Our model is also highly skillful and capable of higher-resolution predictions, down to the hour. Overall, WeatherNext 2 surpasses our previous state-of-the-art WeatherNext model on 99.9% of variables (e.g. temperature, wind, humidity) and lead times (0-15 days), enabling more useful and accurate forecasts.

This improved performance is enabled by a new AI modelling approach called a Functional Generative Network (FGN), which injects ‘noise’ directly into the model architecture so the forecasts it generates remain physically realistic and interconnected.

This approach is particularly useful for predicting what meteorologists refer to as “marginals” and “joints.” Marginals are individual, standalone weather elements: the precise temperature at a specific location, the wind speed at a certain altitude or the humidity. What's novel about our approach is that the model is only trained on these marginals. Yet, from that training, it learns to skillfully forecast 'joints' — large, complex, interconnected systems that depend on how all those individual pieces fit together. This 'joint' forecasting is required for our most useful predictions, such as identifying entire regions affected by high heat, or expected power output across a wind farm.

联系我们 contact @ memedata.com