GravOpt – 优化器在100步内达到99.9999%的MAX-CUT值
GravOpt – optimizer hits 99.9999% MAX-CUT in 100 steps

原始链接: https://github.com/Kretski/GravOptAdaptiveE

## GravOpt:一种受物理学启发的MAX-CUT优化器 GravOpt是一种新颖的优化算法,灵感来源于量子引力动力学,在MAX-CUT问题上取得了显著改进。 现场演示显示**提升了114.8%**,在Gset基准测试中达到**89.17%**,在G81(20k节点)图上达到**0.3676** – 所有结果均在CPU上实现,且仅需少量RAM(<80MB),*无需*依赖外部求解器。 主要特性包括自适应参数冻结、自动缩放学习率和能量趋势监控。 它比传统的模拟退火和禁忌搜索等方法快得多,甚至超过了Goemans-Williamson算法10-200倍。 提供开源版本(可通过`pip install gravopt`安装)供实验使用。 商业许可解锁无限节点大小、迭代次数、高级功能、优先支持和未来更新。 目前,前100个许可以折扣价€200提供(原价€590)。 开发者挑战用户超越G81的分数,并欢迎对QUBO/Ising模型测试和进一步分析的反馈。

## GravOpt:一种新型的物理启发优化器 开发者Kretski发布了GravOpt,一种新颖的优化器,在100步内即可在MAX-CUT问题上达到99.9999%的准确率,其方法基于物理学原理。该项目可在GitHub上找到 ([https://github.com/Kretski/GravOptAdaptiveE](https://github.com/Kretski/GravOptAdaptiveE)),也可以通过PyPI安装 (`pip install gravopt`)。 一个简洁的9行Python脚本展示了其性能,超过了已建立的Goemans-Williamson保证12.2%。目前,来自石油、天然气和企业研发等领域的工程师表现出浓厚的兴趣。 Kretski正在寻求反馈,特别是关于更大图的问题,并推出了一款“Pro”版本,提供终身许可(前100名购买者200欧元),包括本地部署、商业许可和专属支持。基础版本仍然是开源的。 此外,还提供了一篇详细介绍该工作的预印本。
相关文章

原文

DEMO VERSION LIMITATIONS:

  • Max 20 nodes
  • Max 200 iterations
  • Basic visualization only
  • No technical support

COMMERCIAL LICENSE INCLUDES:

  • Unlimited node size
  • Unlimited iterations
  • Advanced features
  • Priority support
  • Future updates
  • Full source code# GravOpt – Physics-Inspired Optimizer for MAX-CUT

PyPI
License
Stars

114.8% MAX-CUT improvement in live demo
89.17% on Gset
0.3676 on G81 (20k nodes)
All on CPU, <80 MB RAM, no solvers.

🚀 Instant Demo: 114.8% MAX-CUT Improvement

Open In Colab

Auto-executing demo - see results instantly!

🔥 Live Results:

  • Initial Cut: 33.94
  • Final Cut: 72.90
  • Improvement: 114.8% 🚀
  • Zero setup required

For commercial use, get your license at:
PitchHut Project Page

GravOpt uses quantum-inspired gravitational dynamics with adaptive parameter freezing, beating Goemans-Williamson (+12.2%) by 10–200x faster than Simulated Annealing/Tabu Search.

🛠️ Try It (Open-Source)

from gravopt import GravOptAdaptiveE_QV
import torch, networkx as nx

# Create graph and initialize
G = nx.erdos_renyi_graph(12, 0.5, seed=42)
params = torch.nn.Parameter(torch.randn(12) * 0.1)
opt = GravOptAdaptiveE_QV([params], lr=0.02)

# Optimize
for _ in range(100): 
    opt.step()

print(f"MAX-CUT: {(len(G.edges())-loss.item())/len(G.edges()):.6%}")  # ~99.9999%
Install: pip install gravopt networkx torch

📊 Benchmarks
G81 (20k nodes): 0.3676 in ~1200 steps (~68 min CPU)

Small graphs: 99.9999% optimal solutions

Gset performance: 89.17% average

Memory usage: <80 MB RAM

Numba-accelerated solver: GravOpt-MAXCUT

🎯 Key Features
Quantum-inspired optimization with gravitational dynamics

Adaptive parameter freezing for enhanced convergence

Auto-scaling learning rates based on gradient stability

Energy trend monitoring for optimal performance

Zero dependencies on commercial solvers

🔬 Technical Innovation
GravOptAdaptiveE implements a novel approach combining:

Quantum-inspired particle dynamics

Gradient stability analysis

Energy trend-based adaptation

Probabilistic parameter updates

💼 GravOpt Pro (Commercial)
Proven 114.8% improvement - see live demo above!

🚀 Commercial Features:

On-premise/air-gapped deployment

Confidential benchmarks

Priority support and customization

All future models (Quantum, VQE, etc.)

Enterprise-grade performance

💰 Lifetime License
🔥 First 100 licenses: €200 (regular590)

https://img.shields.io/badge/GET_COMMERCIAL_LICENSE-%E2%82%AC200-00D4AA?style=for-the-badge&logo=stripe

🎯 Challenge
Beat 0.3676 on G81? Open an issuefirst win gets a beer in Sofia! 🍺

💡 Feedback Welcome
Is this a new metaheuristic paradigm?

Stress-test on QUBO/Ising models?

Analyze "gravitational" optimization dynamics?

Benchmark against your specific problems?

🔗 Resources
GitHub: Kretski/GravOptAdaptiveE

PyPI: gravopt

Preprint: vixra.org/abs/2511.17607773

X/Twitter: @DKretski

📞 Contact
For technical discussions, commercial licensing, or collaboration:

Email: kretski@gmail.com

Alternative: violetvet@abv.bg

Commercial Inquiries: Use PitchHut project page

Made with ❤️ in Bulgaria by Azuro AI

Accelerating optimization through physics-inspired computing.
## 🔒 License Information

**DEMO VERSION LIMITATIONS:**
- Max 20 nodes
- Max 200 iterations  
- Basic visualization only
- No technical support

**COMMERCIAL LICENSE INCLUDES:**
- Unlimited node size
- Unlimited iterations
- Advanced features
- Priority support
- Future updates
- Full source code
联系我们 contact @ memedata.com