掺杂桦叶来源碳点的花生壳随机激光
Random lasers from peanut kernel doped with birch leaf–derived carbon dots

原始链接: https://www.degruyterbrill.com/document/doi/10.1515/nanoph-2025-0312/html

最近的研究探索了激光在微米和纳米尺度上的令人兴奋的潜力,特别是利用生物材料和新型纳米材料,如碳点(CDs)。生物激光利用维生素、蛋白质(GFP)甚至细胞内结构等成分,为生物医学应用(包括生物检测和成像)提供生物相容性光源。与此同时,在利用各种来源(包括天然产物)衍生的荧光纳米粒子——碳点作为激光增益介质方面也取得了显著进展。 这些碳点表现出可调发射、高光致发光,甚至在溶液和固态形式下都能产生激光,有时会受到等离子体结构的增强。激光的产生机制包括放大自发辐射和在无序介质中的随机激光。研究人员正在研究控制碳点性质的方法,以实现特定波长(包括减少光毒性的红光)和提高稳定性。该领域受益于对随机激光基本原理的理解,以及探索创新的制造技术,如喷墨打印,以制造这些微型激光器件。这些进展为传感、治疗和先进光学技术领域的应用铺平了道路。

黑客新闻 新 | 过去 | 评论 | 提问 | 展示 | 招聘 | 提交 登录 随机:花生仁掺杂桦叶衍生的碳点产生的激光 (degruyterbrill.com) 7点 由 PaulHoule 1小时前 | 隐藏 | 过去 | 收藏 | 讨论 指南 | 常见问题 | 列表 | API | 安全 | 法律 | 申请YC | 联系 搜索:
相关文章

原文

[1] Y.-C. Chen and X. Fan, “Biological lasers for biomedical applications,” Adv. Opt. Mater., vol. 7, no. 17, 2019, https://doi.org/10.1002/adom.201900377.Search in Google Scholar

[2] R. Bernasconi, G. P. Invernizzi, E. Gallo Stampino, R. Gotti, D. Gatti, and L. Magagnin, “Printing MEMS: application of inkjet techniques to the manufacturing of inertial accelerometers,” Micromachines, vol. 14, no. 11, p. 2082, 2023. https://doi.org/10.3390/mi14112082.Search in Google Scholar PubMed PubMed Central

[3] A. Smirnov, et al.., “Fully inkjet‐printed perovskite microlaser with an outcoupling waveguide,” Adv. Opt. Mater., vol. 11, no. 17, 2023, Art. no. 2300385. https://doi.org/10.1002/adom.202300385.Search in Google Scholar

[4] S. Nizamoglu, M. C. Gather, and S. H. Yun, “All-biomaterial laser using vitamin and biopolymers,” Adv. Mater., vol. 25, no. 41, pp. 5943–5947, 2013. https://doi.org/10.1002/adma201300818.Search in Google Scholar PubMed

[5] M. Humar and S. H. Yun, “Intracellular microlasers,” Nat. Photonics, vol. 9, no. 9, p. 572, 2015. https://doi.org/10.1038/nphoton.2015.129.Search in Google Scholar PubMed PubMed Central

[6] J. Xu, S. Xiu, Z. Lian, H. Yu, and J. Cao, “Bioinspired materials for droplet manipulation: principles, methods and applications,” Droplet, vol. 1, no. 1, pp. 11–37, 2022. https://doi.org/10.1002/dro2.12.Search in Google Scholar

[7] M. C. Gather and S. H. Yun, “Single-cell biological lasers,” Nat. Photonics, vol. 5, no. 7, pp. 406–410, 2011. https://doi.org/10.1038/nphoton.2011.99.Search in Google Scholar

[8] X. Wu, Q. Chen, Y. Sun, and X. Fan, “Bio-inspired optofluidic lasers with luciferin,” Appl. Phys. Lett., vol. 102, no. 20, 2013, https://doi.org/10.1063/1.4807837.Search in Google Scholar

[9] T. Pan, D. Lu, H. Xin, and B. Li, “Biophotonic probes for bio-detection and imaging,” Light: Sci. Appl., vol. 10, no. 1, p. 124, 2021. https://doi.org/10.1038/s41377-021-00561-2.Search in Google Scholar PubMed PubMed Central

[10] H. He, S. Li, S. Wang, M. Hu, Y. Cao, and C. Wang, “Manipulation of cellular light from green fluorescent protein by a femtosecond laser,” Nat. Photonics, vol. 6, no. 10, pp. 651–656, 2012. https://doi.org/10.1038/nphoton.2012.207.Search in Google Scholar

[11] Y. Yang, et al.., “Electrochemical fluorescence switching of enhanced green fluorescent protein,” Biosens. Bioelectron., vol. 237, 2023, Art. no. 115467. https://doi.org/10.1016/j.bios.2023.115467.Search in Google Scholar PubMed

[12] M. Chalfie, Y. Tu, G. Euskirchen, W. W. Ward, and D. C. Prasher, “Green fluorescent protein as a marker for gene expression,” Science, vol. 263, no. 5148, pp. 802–805, 1994. https://doi.org/10.1126/science.8303295.Search in Google Scholar PubMed

[13] Y. Zhang, et al.., “Exploring carbon dots for biological lasers,” Adv. Mater., vol. 37, no. 16, 2025, https://doi.org/10.1002/adma.202418118.Search in Google Scholar PubMed

[14] P. L. Gourley, et al.., “Ultrafast nanolaser flow device for detecting cancer in single cells,” Biomed. Microdevices, vol. 7, no. 4, pp. 331–339, 2005. https://doi.org/10.1007/s10544-005-6075-x.Search in Google Scholar PubMed

[15] X. Xu, et al.., “Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments,” J. Am. Chem. Soc., vol. 126, no. 40, pp. 12736–12737, 2004. https://doi.org/10.1021/ja040082h.Search in Google Scholar PubMed

[16] R. Jelinek, Carbon Quantum Dots: Synthesis, Properties and Applications, vol. 2, 34th ed. Shanghai, Springer, 2016.Search in Google Scholar

[17] S. Zhu, et al.., “Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging,” Angew. Chem., Int. Ed., vol. 52, no. 14, 2013, https://doi.org/10.1002/anie.201300519.Search in Google Scholar PubMed

[18] C. Ding, A. Zhu, and Y. Tian, “Functional surface engineering of C-dots for fluorescent biosensing and in vivo bioimaging,” Acc. Chem. Res., vol. 47, no. 1, pp. 20–30, 2014. https://doi.org/10.1021/ar400023s.Search in Google Scholar PubMed

[19] X. Zhang, et al.., “Natural‐product‐derived carbon dots: from natural products to functional materials,” ChemSusChem, vol. 11, no. 1, pp. 11–24, 2018. https://doi.org/10.1002/cssc.201701847.Search in Google Scholar PubMed

[20] L. Song, et al.., “Red light-emitting carbon dots for reduced phototoxicity and photothermal/photodynamic-enhanced synergistic tumor therapy,” Colloids Surf., A: Physicochem. Eng. Asp., vol. 659, 2023, Art. no. 130763. https://doi.org/10.1016/j.colsurfa.2022.130763.Search in Google Scholar

[21] W. Zhang, H. Zhu, S. F. Yu, and H. Yang, “Observation of lasing emission from carbon nanodots in organic solvents,” Adv. Mater., vol. 24, no. 17, pp. 2263–2267, 2012. https://doi.org/10.1002/adma.201104950.Search in Google Scholar PubMed

[22] W.-C. Liao, et al.., “Plasmonic carbon-dot-decorated nanostructured semiconductors for efficient and tunable random laser action,” ACS Appl. Nano Mater., vol. 1, no. 1, pp. 152–159, 2017. https://doi.org/10.1021/acsanm.7b00061.Search in Google Scholar

[23] S. Qu, X. Liu, X. Guo, M. Chu, L. Zhang, and D. Shen, “Amplified spontaneous green emission and lasing emission from carbon nanoparticles,” Adv. Funct. Mater., vol. 24, no. 18, pp. 2689–2695, 2014. https://doi.org/10.1002/adfm.201303352.Search in Google Scholar

[24] S. Prakash, S. Sahu, S. Bhattacharya, P. B. Bisht, and A. K. Mishra, “Carbon Dot – NaCl crystals for white‐light generation and Fabry‐Perot lasing,” Chem. – Asian J., vol. 16, no. 7, pp. 783–792, 2021. https://doi.org/10.1002/asia.202100074.Search in Google Scholar PubMed

[25] Y. Liu, et al.., “Perylenedioic acid‐derived carbon dots with near 100 % quantum yield in aqueous solution for lasing and lighting,” Adv. Funct. Mater., vol. 34, no. 36, 2024, Art. no. 2401353. https://doi.org/10.1002/adfm.202401353.Search in Google Scholar

[26] S. Tang, et al.., “Fluorescent carbon dots from birch leaves for sustainable electroluminescent devices,” Green Chem., vol. 25, no. 23, pp. 9884–9895, 2023. https://doi.org/10.1039/d3gc03827k.Search in Google Scholar

[27] A. Ananthanarayanan, et al.., “Facile synthesis of graphene quantum dots from 3D graphene and their application for Fe3+ sensing,” Adv. Funct. Mater., vol. 24, no. 20, pp. 3021–3026, 2014. https://doi.org/10.1002/adfm.201303441.Search in Google Scholar

[28] K. Östbring, et al.., “The effect of heat treatment of thylakoids on their ability to inhibit in vitro lipase/co-lipase activity,” Food Funct., vol. 5, no. 9, pp. 2157–2165, 2014. https://doi.org/10.1039/c3fo60651a.Search in Google Scholar PubMed

[29] A. Pramanik, M. Reale, M. Cannas, R. Popescu, A. Sciortino, and F. Messina, “Statistically identified dual type random lasing from carbon dots,” ACS Photonics, vol. 11, no. 8, pp. 3055–3067, 2024. https://doi.org/10.1021/acsphotonics.4c00279.Search in Google Scholar

[30] Y. Zhang, et al.., “Unveiling the photoluminescence mechanisms of carbon dots through tunable near-infrared dual-wavelength lasing,” Matter, vol. 7, no. 10, pp. 3518–3536, 2024. https://doi.org/10.1016/j.matt.2024.06.011.Search in Google Scholar

[31] F. Yuan, et al.., “Ultrastable and low‐threshold random lasing from narrow‐bandwidth‐emission triangular carbon quantum dots,” Adv. Opt. Mater., vol. 7, no. 2, 2019, Art. no. 1801202. https://doi.org/10.1002/adom.201801202.Search in Google Scholar

[32] Y. Zhang, et al.., “Solid‐state red laser with a single longitudinal mode from carbon dots,” Angew. Chem., Int. Ed., vol. 60, no. 48, pp. 25514–25521, 2021. https://doi.org/10.1002/anie.202111285.Search in Google Scholar PubMed

[33] D. S. Wiersma, “The physics and applications of random lasers,” Nat. Phys., vol. 4, no. 5, pp. 359–367, 2008. https://doi.org/10.1038/nphys971.Search in Google Scholar

[34] H. Cao, “Lasing in random media,” Waves Random Media, vol. 13, no. 3, p. R1, 2003. https://doi.org/10.1088/0959-7174/13/3/201.Search in Google Scholar

[35] A. Tulek and Z. Vardeny, “Studies of random laser action inπ-conjugated polymers,” J. Opt., vol. 12, no. 2, 2010, Art. no. 024008. https://doi.org/10.1088/2040-8978/12/2/024008.Search in Google Scholar

[36] X. Chen, et al.., “Confining energy migration in upconversion nanoparticles towards deep ultraviolet lasing,” Nat. Commun., vol. 7, 2016, Art. no. 10304. https://doi.org/10.1038/ncomms10304.Search in Google Scholar PubMed PubMed Central

[37] H. Cao, et al.., “Random lasers with coherent feedback,” IEEE J. Sel. Top. Quantum Electron., vol. 9, no. 1, pp. 111–119, 2003. https://doi.org/10.1109/jstqe.2002.807975.Search in Google Scholar

联系我们 contact @ memedata.com