每个数学家只有几个诀窍。
Every mathematician has only a few tricks (2020)

原始链接: https://mathoverflow.net/questions/363119/every-mathematician-has-only-a-few-tricks

## 利用对易算符解决问题 物理学中一种强大的技术利用了对易算符可以同时对角化的事实,从而简化复杂问题。 了解一个算符的本征向量可以大大方便另一个算符的对角化。 这一原理在各种情况下都有应用:**平移不变性**(导致波动方程的傅里叶变换),**离散平移对称性**(如在晶体中,产生布洛赫-弗洛凯理论和解释电导率的能带结构),以及**旋转不变性**(解决氢原子和揭示角动量量子化的关键)。 此外,认识到潜在的对称性,例如**粒子物理学中的SU(3)**,使物理学家能够通过表示理论组织和理解大量的粒子。 基本上,识别和利用对易算符提供了一个框架,通过利用其内在对称性来解决复杂的物理系统。

## 每个数学家只有几个诀窍 - Hacker News 总结 一个 Hacker News 的讨论,源于一个 MathOverflow 帖子的链接,探讨了即使是杰出的数学家和工程师在其职业生涯中也依赖于有限的核心技术。 许多评论者分享了他们严重依赖特定方法的故事——例如牛顿-拉夫逊法、奇异值分解 (SVD) 或整数线性规划——来解决各种问题。 几位强调了*掌握*这些少数“诀窍”的重要性,而不是不断寻求新的方法。 对话也涉及了编程的相似之处,提到了利用图、调试技能以及编写良好的代码的力量。一个反复出现的主题是实践问题解决比理论复杂性更有价值,以及经验丰富的专业人士倾向于坚持有效的方法,即使是较旧的方法。最终,讨论表明,在少数基本技术方面拥有深入的专业知识可以在不同领域取得显著成效。
相关文章

原文

From a physicist point of view I want to mention this trick and its generalization for operators:

      "Two commuting matrices are simultaneously diagonalizable"

(for physicists all matrices are diagonalizable). Of course the idea is that if you know the eigenvectors of one matrix/operator then diagonalizing the other one is much easier. Here are some applications.

1)The system is translation invariant : Because the eigenvectors of the translation operator are $e^{ik.x}$, then one should use the Fourier transform. It solves all the wave equations for light, acoustics, of free quantum electrons or the heat equation in homogeneous media.

2)The system has a discrete translation symmetry: The typical system is the atoms in a solid state that form a crystal. We have a discrete translation operator $T_a\phi(x)=\phi(x+a)$ with $a$ the size of the lattice and then we should try $\phi_k(x+a)=e^{ik.a}\phi_k(x)$ as it is an eigenvector of $T_a$. This gives the Bloch-Floquet theory where the spectrum is divided into band structure. It is one of the most famous model of condensed matter as it explains the different between conductors or insulators.

3)The system is rotational invariant: One should then use and diagonalize the rotation operator first. This will allow us to find the eigenvalue/eigenvectors of the Hydrogen atom. By the way we notice the eigenspace of the Hydrogen are stable by rotation and are therefore finite dimension representations of $SO(3)$. The irreducible representations of $SO(3)$ have dimension 1,3,5,... and they appears, considering also the spin of the electron, as the columns of the periodic table of the elements (2,6,10,14,...).

4)$SU(3)$ symmetry: Particle physics is extremely complicated. However physicists have discovered that there is an underlying $SU(3)$ symmetry. Then considering the representations of $SU(3)$ the zoology of particles seems much more organized (A, B).

联系我们 contact @ memedata.com