为形式化方法提供保证的、可预测的LLM验证器系统设计
Designing Predictable LLM-Verifier Systems for Formal Method Guarantee

原始链接: https://arxiv.org/abs/2512.02080

本研究提出一个形式化框架——LLM-Verifier收敛定理,以解决在形式化软件验证中使用大型语言模型(LLM)的不可靠性问题。目前,LLM辅助验证缺乏理论保证,可能导致不可预测的结果。 作者将验证过程建模为一个四阶段顺序马尔可夫链(\texttt{CodeGen}、\texttt{Compilation}、\texttt{InvariantSynth}、\texttt{SMTSolving}),并证明,在每个阶段具有非零的成功概率(δ)的情况下,系统*将*达到验证状态。至关重要的是,他们建立了一个延迟界限:验证所需的期望步数不超过4/δ。 大量的测试(超过90,000次试验)有力地验证了这一4/δ界限,展示了稳定的收敛性和准确的性能预测。该研究进一步定义了最佳性能的工作区域,并提出了一种动态校准策略,用于实际应用,从而摆脱了猜测,转向可预测且可靠的LLM辅助形式化验证。

近期一篇arXiv论文探讨了一个理论框架——“LLM-Verifier收敛定理”,旨在利用形式化方法保证大型语言模型(LLM)生成(或验证)代码的正确性。然而,Hacker News上的评论员对该论文的实际应用提出了担忧。 多位用户指出,实验中实际上并没有*使用* LLM,而是模拟了一个简化的马尔可夫链模型来验证其理论预测。 一种批评集中在该定理本身上,认为它只是马尔可夫链理论中的一个标准结果,并非与LLM相关的全新突破。 讨论的中心是“几乎必然”收敛(概率1)的含义及其在实际场景中的局限性,在实际场景中,需要无限的时间才能保证结果。 虽然在理论上是合理的,但将此应用于LLM生成代码的实际挑战——包括自然语言和形式化规范之间的语义差距——也被强调。 另一篇关于LLM可扩展形式化验证的相关论文(“BEAVER”)也被分享。
相关文章

原文

View a PDF of the paper titled The 4/$\delta$ Bound: Designing Predictable LLM-Verifier Systems for Formal Method Guarantee, by PIerre Dantas and 3 other authors

View PDF HTML (experimental)
Abstract:The integration of Formal Verification tools with Large Language Models (LLMs) offers a path to scale software verification beyond manual workflows. However, current methods remain unreliable: without a solid theoretical footing, the refinement process acts as a black box that may oscillate, loop, or diverge. This work bridges this critical gap by developing an LLM-Verifier Convergence Theorem, providing the first formal framework with provable guarantees for termination in multi-stage verification pipelines. We model the interaction not as a generic loop, but as a sequential absorbing Markov Chain comprising four essential engineering stages: \texttt{CodeGen}, \texttt{Compilation}, \texttt{InvariantSynth}, and \texttt{SMTSolving}. We prove that for any non-zero stage success probability ($\delta > 0$), the system reaches the \texttt{Verified} state almost surely. Furthermore, because of the sequential nature of the pipeline, we derive a precise latency bound of $\mathbb{E}[n] \leq 4/\delta$. We stress-tested this prediction in an extensive empirical campaign comprising over 90,000 trials. The results match the theory with striking consistency: every run reached verification, and the empirical convergence factor clustered tightly around $C_f\approx 1.0$, confirming that the $4/\delta$ bound accurately mirrors system behavior rather than serving as a loose buffer. Based on this data, we identify three distinct operating zones -- marginal, practical, and high-performance -- and propose a dynamic calibration strategy to handle parameter drift in real-world environments. Together, these contributions replace heuristic guesswork with a rigorous architectural foundation, enabling predictable resource planning and performance budgeting for safety-critical software.
From: Pierre Dantas [view email]
[v1] Sun, 30 Nov 2025 22:19:09 UTC (459 KB)
[v2] Tue, 16 Dec 2025 22:28:30 UTC (491 KB)
联系我们 contact @ memedata.com