内禀可拉伸的二维MoS2晶体管
Intrinsically stretchable 2D MoS2 transistors

原始链接: https://www.nature.com/articles/s41467-026-68504-2

## 可拉伸电子学:一个快速发展的领域 最近的研究表明,在为人体集成应用开发可拉伸和柔性电子产品方面取得了显著进展。该领域依赖于创新材料和设计,以克服传统刚性电路的局限性。关键策略包括利用**固有可拉伸材料**——包括聚合物和MoS2等二维材料——以及采用纳米约束和互穿聚合物网络等独特架构,以增强可拉伸性和性能。 研究人员正专注于改进材料的性能,例如塑性(在InSe和金属单硫化物等材料中)和应变不敏感性。**应变工程**也被探索用于提高二维材料中的载流子迁移率。**可溶液加工的二维油墨**和印刷技术(如凹槽模印刷)的进步,正在实现大规模、经济高效的制造。 应用范围正在扩展到基本晶体管之外,包括用于**神经形态计算的复杂电路、具有集成传感器(温度、X射线)的柔性电子皮肤**,甚至**高速集成电路**。 持续的工作正在解决诸如在应变下保持性能、增强透明度以及实现强大的自修复能力等挑战,为可穿戴和可植入电子设备铺平道路。

黑客新闻 新 | 过去 | 评论 | 提问 | 展示 | 招聘 | 提交 登录 内在可拉伸的二维MoS2晶体管 (nature.com) 25点 由 bookofjoe 17小时前 | 隐藏 | 过去 | 收藏 | 讨论 指南 | 常见问题 | 列表 | API | 安全 | 法律 | 申请YC | 联系 搜索:
相关文章

原文
  • Dai, Y., Hu, H., Wang, M., Xu, J. & Wang, S. Stretchable transistors and functional circuits for human-integrated electronics. Nat. Electron. 4, 17–29 (2021).

    Google Scholar 

  • Wang, B. et al. High-k gate dielectrics for emerging flexible and stretchable electronics. Chem. Rev. 118, 5690–5754 (2018).

    Google Scholar 

  • Xu, J. et al. Highly stretchable polymer semiconductor films through the nanoconfinement effect. Science 355, 59–64 (2017).

    Google Scholar 

  • Kang, J. et al. Tough-interface-enabled stretchable electronics using non-stretchable polymer semiconductors and conductors. Nat. Nanotechnol. 17, 1265–1271 (2022).

    Google Scholar 

  • Wang, W. et al. Strain-insensitive intrinsically stretchable transistors and circuits. Nat. Electron. 4, 143–150 (2021).

    Google Scholar 

  • Wang, W. et al. Neuromorphic sensorimotor loop embodied by monolithically integrated, low-voltage, soft e-skin. Science 380, 735–742 (2023).

    Google Scholar 

  • Zhong, D. et al. High-speed and large-scale intrinsically stretchable integrated circuits. Nature 627, 313–320 (2024).

    Google Scholar 

  • Liang, J. et al. Intrinsically stretchable and transparent thin-film transistors based on printable silver nanowires, carbon nanotubes and an elastomeric dielectric. Nat. Commun. 6, 7647 (2015).

    Google Scholar 

  • Zhu, C. et al. Stretchable temperature-sensing circuits with strain suppression based on carbon nanotube transistors. Nat. Electron. 1, 183–190 (2018).

    Google Scholar 

  • Wei, T.-R. et al. Exceptional plasticity in the bulk single-crystalline van der Waals semiconductor InSe. Science 369, 542–545 (2020).

    Google Scholar 

  • Gao, Z. et al. High-throughput screening of 2D van der Waals crystals with plastic deformability. Nat. Commun. 13, 7491 (2022).

    Google Scholar 

  • Li, N. et al. Large-scale flexible and transparent electronics based on monolayer molybdenum disulfide field-effect transistors. Nat. Electron. 3, 711–717 (2020).

    Google Scholar 

  • Das, S. et al. Transistors based on two-dimensional materials for future integrated circuits. Nat. Electron. 4, 786–799 (2021).

    Google Scholar 

  • Liu, L. et al. Uniform nucleation and epitaxy of bilayer molybdenum disulfide on sapphire. Nature 605, 69–75 (2022).

    Google Scholar 

  • Si, M. et al. Steep-slope hysteresis-free negative capacitance MoS2 transistors. Nat. Nanotech. 13, 24–28 (2018).

    Google Scholar 

  • Bertolazzi, S., Brivio, J. & Kis, A. Stretching and breaking of ultrathin MoS2. ACS Nano 5, 9703–9709 (2011).

    Google Scholar 

  • Lin, Z. et al. Solution-processable 2D semiconductors for high-performance large-area electronics. Nature 562, 254–258 (2018).

    Google Scholar 

  • Dai, Y., He, Q., Huang, Y., Duan, X. & Lin, Z. Solution-processable and printable two-dimensional transition metal dichalcogenide inks. Chem. Rev. 124, 5795–5845 (2024).

    Google Scholar 

  • Yan, Z. et al. Highly stretchable van der Waals thin films for adaptable and breathable electronic membranes. Science 375, 852–859 (2022).

    Google Scholar 

  • Wong, L. W. et al. Deciphering the ultra-high plasticity in metal monochalcogenides. Nat. Mater. 23, 196–204 (2024).

    Google Scholar 

  • Zhang, W. et al. Stretchable MoS2 artificial photoreceptors for E-skin. Adv. Funct. Mater. 32, 2107524 (2022).

    Google Scholar 

  • Lee, C. et al. Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano 4, 2695–2700 (2010).

    Google Scholar 

  • Kwon, Y. A. et al. Wafer-scale transistor arrays fabricated using slot-die printing of molybdenum disulfide and sodium-embedded alumina. Nat. Electron. 6, 443–450 (2023).

    Google Scholar 

  • Xu, J. et al. Multi-scale ordering in highly stretchable polymer semiconducting films. Nat. Mater. 18, 594–601 (2019).

    Google Scholar 

  • Harada, N., Sato, S. & Yokoyama, N. Computational study on electrical properties of transition metal dichalcogenide field-effect transistors with strained channel. J. Appl. Phys. 115, 034505 (2014).

    Google Scholar 

  • Shin, H. et al. Nonconventional strain engineering for uniform biaxial tensile strain in MoS2 thin film transistors. ACS Nano 18, 4414–4423 (2024).

    Google Scholar 

  • Datye, I. M. et al. Strain-enhanced mobility of monolayer MoS2. Nano Lett 22, 8052–8059 (2022).

    Google Scholar 

  • Chen, Y. et al. Mobility enhancement of a strained MoS2 transistor on a flat substrate. ACS Nano 17, 14954–14962 (2023).

    Google Scholar 

  • Hosseini, M., Elahi, M., Pourfath, M. & Esseni, D. Strain-induced mobility modulation in single-layer MoS2. J. Phys. D: Appl. Phys. 48, 375104 (2015).

    Google Scholar 

  • Zheng, Y.-Q. et al. Monolithic optical microlithography of high-density elastic circuits. Science 373, 88–94 (2021).

    Google Scholar 

  • Zheng, Y. et al. A molecular design approach towards elastic and multifunctional polymer electronics. Nat. Commun. 12, 5701 (2021).

    Google Scholar 

  • Zheng, Y. et al. An intrinsically stretchable high-performance polymer semiconductor with low crystallinity. Adv. Funct. Mater. 29, 1905340 (2019).

    Google Scholar 

  • Zhang, S. et al. Tacky elastomers to enable tear-resistant and autonomous self-healing semiconductor composites. Adv. Funct. Mater. 30, 2000663 (2020).

    Google Scholar 

  • Zhang, G. et al. Versatile interpenetrating polymer network approach to robust stretchable electronic devices. Chem. Mater. 29, 7645–7652 (2017).

    Google Scholar 

  • Wang, S. et al. Skin electronics from scalable fabrication of an intrinsically stretchable transistor array. Nature 555, 83–88 (2018).

    Google Scholar 

  • Shim, H. et al. Elastic integrated electronics based on a stretchable n-type elastomer–semiconductor–elastomer stack. Nat. Electron. 6, 349–359 (2023).

    Google Scholar 

  • Mun, J. et al. A design strategy for high mobility stretchable polymer semiconductors. Nat. Commun. 12, 3572 (2021).

    Google Scholar 

  • Matsuda, M. et al. Impact of the heteroatoms on mobility–stretchability properties of n-type semiconducting polymers with conjugation break spacers. Macromolecules 56, 2348–2361 (2023).

    Google Scholar 

  • Liu, N. et al. Ultratransparent and stretchable graphene electrodes. Sci. Adv. 3, e1700159 (2017).

    Google Scholar 

  • Liu, D. et al. Tuning the mechanical and electric properties of conjugated polymer semiconductors: side-chain design based on asymmetric benzodithiophene building blocks. Adv. Funct. Mater. 32, 2203527 (2022).

    Google Scholar 

  • Lin, Y.-C. et al. Intrinsically stretchable naphthalenediimide–bithiophene conjugated statistical terpolymers using branched conjugation break spacers for field–effect transistors. Polym. Chem. 12, 6167–6178 (2021).

    Google Scholar 

  • Lin, Y.-C. et al. Investigation of the mobility–stretchability properties of naphthalenediimide-based conjugated random terpolymers with a functionalized conjugation break spacer. Macromolecules 54, 7388–7399 (2021).

    Google Scholar 

  • Kuzumoto, Y. et al. Effective molecular alignment of semiconducting polymer and its application to photopatterned stretchable transistors. Adv. Mater. Technol. 10, 2500068 (2025).

    Google Scholar 

  • Guo, S. et al. Intrinsically stretchable n-type organic transistor based on an elastic hybrid network semiconducting film. IEEE Electron Device Lett 44, 1853–1856 (2023).

    Google Scholar 

  • Ding, Y. et al. Intrinsically stretchable n-type polymer semiconductors through side chain engineering. Macromolecules 54, 8849–8859 (2021).

    Google Scholar 

  • Bian, Y. et al. Spatially nanoconfined n-type polymer semiconductors for stretchable ultrasensitive X-ray detection. Nat. Commun. 13, 7163 (2022).

    Google Scholar 

  • An, C. et al. High-performance n-type stretchable semiconductor blends for organic thin-film transistors and artificial synapses. Chem. Mater. 36, 450–460 (2024).

    Google Scholar 

  • Parkin, W. M. et al. Raman shifts in slectron-irradiated monolayer MoS2. ACS Nano 10, 4134–4142 (2016).

    Google Scholar 

  • 联系我们 contact @ memedata.com