这段代码实现了一个简化的类似React的渲染系统,名为“Didact”。它专注于创建虚拟DOM(使用`createElement`和`createTextElement`)并根据变化有效地更新真实DOM。 核心过程包括: 1. **`createElement`**: 创建虚拟DOM节点(fiber)。 2. **`render`**: 启动渲染过程,通过`requestIdleCallback`调度工作以提高性能。 3. **`workLoop` & `performUnitOfWork`**: 这些函数迭代地构建DOM树,创建DOM节点(`createDom`)并应用属性(`updateDom`)。 4. **`reconcileChildren`**: 比较新的虚拟DOM与旧的虚拟DOM,以识别变化(添加、更新、删除)。 5. **`commitWork`**: 将更改应用于实际DOM,处理插入、更新和删除。 该系统使用“effect标签”(PLACEMENT, UPDATE, DELETION)来跟踪必要的DOM操作,并通过仅更改不同之处来优化更新。它的目标是模仿React的核心概念:虚拟DOM和高效的协调。
## 用音乐可视化重塑人工智能:一种新方法
Positron 正在通过专注于音乐可视化来应对现代人工智能开发中的挑战——大规模、反馈循环慢和成本高昂。他们认为这是一个理想的“原始”问题,对缺陷具有容忍性,并能使用更小的 AI 模型进行快速迭代。他们的开源项目 µTate 旨在通过为开发者提供贡献平台并获得经济奖励来启动一种名为 PrizeForge 的筹款解决方案。
核心思想是*远离*当前越来越大的人工智能模型趋势,转向“小型人工智能”——利用诸如权重重用和贪婪粒子方法等技术来降低计算需求。音乐可视化独特地受益于“幻觉”——意想不到的、迷幻的结果——将模型缺陷转化为理想特征。
µTate 使用 Rust 构建,利用 Vulkan 等现代图形 API,并专注于高效的实时性能。该项目强调开放开发,欢迎贡献,并旨在创建一个充满活力的社区,尤其是在本地 LLM 爱好者群体中。最终,Positron 设想了一个良性循环,即快速开发、用户反馈和经济激励,证明即使使用更小、更易于访问的 AI,也可以取得重大进展。
## 2025年LLM进展:范式转变之年
2025年是大型语言模型(LLM)取得显著且常常令人惊讶进展的一年。一个关键转变是**基于可验证奖励的强化学习 (RLVR)** 的整合,将训练扩展到预训练、监督微调和RLHF之外。RLVR专注于数学和代码等领域的客观奖励,培养了“推理”能力,并允许进行更长、更有影响力的训练。
今年也带来了对LLM智能的新理解——不是作为不断进化的“动物”,而是作为通过独特堆栈召唤出来的“幽灵”,针对模仿人类文本和解决特定任务进行了优化。这导致了**“锯齿状智能”**——在某些领域表现出色,在其他领域却出人意料地存在缺陷——以及对传统基准测试日益增长的不信任。
新的应用层涌现,特别是**Cursor**,展示了LLM应用程序如何编排复杂的LLM调用并提供定制界面。**Claude Code** 演示了强大的代理能力,在用户电脑上本地运行。“**氛围编码**”——通过自然语言编程——赋予了专业人士和新手以力量,彻底改变了软件开发。最后,像**Google Gemini Nano banana** 这样的模型预示了LLM界面的未来,从基于文本的交互转向视觉和空间GUI。
总而言之,2025年揭示了LLM作为一种根本上新的智能形式,既强大又不完美,拥有巨大的未开发潜力。