人工光合作用导向有机合成
Artificial photosynthesis directed toward organic synthesis

原始链接: https://www.nature.com/articles/s41467-025-56374-z

这篇研究论文集探讨了光催化的多种方法,重点关注人工光合作用、节能化学合成和绿色化学原理。主要主题包括光催化CO2甲烷化、水分解制氢以及利用太阳能等可再生能源。一些研究强调了二氧化钛(TiO2)和其他光催化材料在各种反应中的应用,包括烯烃(特别是苯乙烯)的氧化、羟基化、胺化和双官能化反应。最近的进展探索了实现反热力学转化、实现C-H键官能化和开发可持续有机合成方法的策略。还研究了活性氧在光催化过程中的作用以及水和无机离子对光催化效率的影响。总的来说,这些文章代表了对光催化在可持续化学和能源应用中潜力的广泛研究。

Hacker News上的一篇讨论围绕着人工光合作用用于有机合成的文章展开。一位用户指出,与太阳能电池板(20-47%)相比,自然光合作用的效率很低(1-2%)。他们认为,在这个领域模仿自然可能不会有成效,因为我们在能源生产方面已经超越了自然。 反驳意见强调,这项研究旨在复制植物的生物制造过程,利用太阳能和雨水在现场合成所需的化合物。如果成功,先前在提高植物效率方面的进展在这个领域也大有希望。虽然目前的太阳能电池板具有更高的能量效率,但植物具有自给自足、自我修复、自然循环以及利用 readily available materials(现成材料)现场生长的优势。制造生命组成部分的能力也是一个关键的区别。该合成过程的潜力可以通过其在合成特非那定(一种抗组胺药)中的应用来体现。

原文
  • Johnson, M. P. Photosynthesis. Essays in Biochemistry 60, 255–273 (2016).

    Article  PubMed  PubMed Central  MATH  Google Scholar 

  • Ulmer, U. et al. Fundamentals and applications of photocatalytic CO2 methanation. Nat. Commun. 10, 3169 (2019).

    Article  ADS  PubMed  PubMed Central  MATH  Google Scholar 

  • Kuttassery, F. et al. 1. Artificial photosynthesis sensitized by metal complexes: utilization of a ubiquitous element. Electrochemistry 82, 475–485 (2014).

    Article  CAS  Google Scholar 

  • Lewis, N. S. & Nocera, D. G. Powering the planet: Chemical challenges in solar energy utilization. Proc. Natl. Acad. Sci. USA. 103, 15729–15735 (2006).

    Article  ADS  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  • Wang, Q. & Domen, K. Particulate photocatalysts for light-driven water splitting: mechanisms, challenges, and design strategies. Chem. Rev. 120, 919–985 (2020).

    Article  CAS  PubMed  MATH  Google Scholar 

  • Yoshino, S., Takayama, T., Yamaguchi, Y., Iwase, A. & Kudo, A. CO2 Reduction using water as an electron donor over heterogeneous photocatalysts aiming at artificial photosynthesis. Acc. Chem. Res. 55, 966–977 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anastas, P. & Eghbali, N. Green chemistry: principles and practice. Chem. Soc. Rev. 39, 301–312 (2010).

    Article  CAS  PubMed  MATH  Google Scholar 

  • Yamauchi, M., Saito, H., Sugimoto, T., Mori, S. & Saito, S. Sustainable organic synthesis promoted on titanium dioxide using coordinated water and renewable energies/resources. Coord. Chem. Rev. 472, 214773 (2022).

    Article  CAS  MATH  Google Scholar 

  • Wang, H., Tian, Y.-M. & König, B. Energy- and atom-efficient chemical synthesis with endergonic photocatalysis. Nat. Rev. Chem. 6, 745–755 (2022).

    Article  CAS  PubMed  MATH  Google Scholar 

  • Sumin, A. L. & Knowles, R. R. Organic synthesis away from equilibrium: contrathermodynamic transformations enabled by excited-state electron transfer. Acc. Chem. Res. 57, 1827–1838 (2024).

    Article  CAS  PubMed  MATH  Google Scholar 

  • Liu, Z., Caner, J., Kudo, A., Naka, H. & Saito, S. Redox-selective generation of aldehydes and H2 from alcohols under visible light. Chem. Eur. J. 19, 9452–9456 (2013).

    Article  CAS  PubMed  MATH  Google Scholar 

  • Masuda, Y., Ishida, N. & Murakami, M. Light-driven carboxylation of o-alkylphenyl ketones with CO2. J. Am. Chem. Soc. 137, 14063–14066 (2015).

    Article  CAS  PubMed  MATH  Google Scholar 

  • Mifsud, M. et al. Photobiocatalytic chemistry of oxidoreductases using water as the electron donor. Nat. Commun. 5, 3145 (2014).

    Article  ADS  PubMed  MATH  Google Scholar 

  • Guo, Y., An, W., Tian, X., Xie, L. & Ren, Y.-L. Coupling photocatalytic overall water splitting with hydrogenation of organic molecules: a strategy for using water as a hydrogen source and an electron donor to enable hydrogenation. Green Chem. 24, 9211–9219 (2022).

    Article  CAS  Google Scholar 

  • Yuzawa, H. et al. Reaction mechanism of aromatic ring hydroxylation by water over platinum-loaded titanium oxide photocatalyst. J. Phys. Chem. C 116, 25376–25387 (2012).

    Article  CAS  MATH  Google Scholar 

  • Yuzawa, H., Kumagai, J. & Yoshida, H. Reaction mechanism of aromatic ring amination of benzene and substituted benzenes by aqueous ammonia over platinum-loaded titanium oxide photocatalyst. J. Phys. Chem. C 117, 11047–11058 (2013).

    Article  CAS  Google Scholar 

  • Yuzawa, H. et al. Anti-Markovnikov hydration of alkenes over platinum-loaded titanium oxide photocatalyst. Catal. Sci. Technol. 3, 1739–1749 (2013).

    Article  CAS  MATH  Google Scholar 

  • Park, S., Jeong, J., Fujita, K., Yamamoto, A. & Yoshida, H. Anti-Markovnikov hydroamination of alkenes with aqueous ammonia by metal-loaded titanium oxide photocatalyst. J. Am. Chem. Soc. 142, 12708–12714 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Courant, T. & Masson, G. Recent progress in visible-light photoredox-catalyzed intermolecular 1,2-difunctionalization of double bonds via an ATRA-type mechanism. J. Org. Chem. 81, 6945–6952 (2016).

    Article  CAS  PubMed  MATH  Google Scholar 

  • Lan, X.-W., Wang, N.-X. & Xing, Y. Recent advances in radical difunctionalization of simple alkenes. Eur. J. Org. Chem. 39, 5821–5851 (2017).

    Article  MATH  Google Scholar 

  • Bao, X., Li, J., Jiang, W. & Huo, C. Radical-mediated difunctionalization of styrenes. Synthesis 51, 4507–4530 (2019).

    Article  CAS  MATH  Google Scholar 

  • Sharma, S., Singh, J. & Sharma, A. Visible light assisted radical‐polar/polar‐radical crossover reactions in organic synthesis. Adv. Synth. Catal. 363, 3146–3169 (2021).

    Article  CAS  MATH  Google Scholar 

  • Cramer, J., Sager, C. P. & Ernst, B. Hydroxyl groups in synthetic and natural-product-derived therapeutics: a perspective on a common functional group. J. Med. Chem. 62, 8915–8930 (2019).

    Article  CAS  PubMed  MATH  Google Scholar 

  • Speckmeier, E., Fuchs, P. J. W. & Zeitler, K. A synergistic LUMO lowering strategy using Lewis acid catalysis in water to enable photoredox catalytic, functionalizing C–C cross-coupling of styrenes. Chem. Sci. 9, 7096–7103 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shibutani, S., Nagao, K. & Ohmiya, H. Organophotoredox-catalyzed three-component coupling of heteroatom nucleophiles, alkenes, and aliphatic redox active esters. Org. Lett. 23, 1798–1803 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Tlahuext‐Aca, A., Garza‐Sanchez, R. A. & Glorius, F. Multicomponent oxyalkylation of styrenes enabled by hydrogen‐bond‐assisted photoinduced electron transfer. Angew. Chem. Int. Ed. 56, 3708–3711 (2017).

    Article  Google Scholar 

  • Fumagalli, G., Boyd, S. & Greaney, M. F. Oxyarylation and aminoarylation of styrenes using photoredox catalysis. Org. Lett. 15, 4398–4401 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Altmann, L.-M., Zantop, V., Wenisch, P., Diesendorf, N. & Heinrich, M. R. Visible light promoted, catalyst‐free radical carbohydroxylation and carboetherification under mild biomimetic conditions. Chem. Eur. J. 27, 2452–2462 (2021).

    Article  CAS  PubMed  Google Scholar 

  • de Souza, E. L. S., Wiethan, C. & Correia, C. R. D. Iron-catalyzed meerwein carbooxygenation of electron-rich olefins: studies with styrenes, vinyl pyrrolidinone, and vinyl oxazolidinone. ACS Omega 4, 18918–18929 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Kindt, S., Wicht, K. & Heinrich, M. R. Thermally induced carbohydroxylation of styrenes with aryldiazonium salts. Angew. Chem. Int. Ed. 55, 8744–8747 (2016).

    Article  CAS  MATH  Google Scholar 

  • Xiong, P. et al. Electrochemically enabled carbohydroxylation of alkenes with H2O and organotrifluoroborates. J. Am. Chem. Soc. 140, 16387–16391 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Dalton, T., Faber, T. & Glorius, F. C–H activation: toward sustainability and applications. ACS Cent. Sci. 7, 245–261 (2021).

    Article  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  • Yue, M. et al. Hydrogen energy systems: a critical review of technologies, applications, trends and challenges. Renew. Sustain. Energy Rev. 146, 111180 (2021).

    Article  MATH  Google Scholar 

  • Yang, W.-C. et al. Vanadyl species-catalyzed complementary β-oxidative carbonylation of styrene derivatives with aldehydes. Org. Biomol. Chem. 13, 2385–2392 (2015).

    Article  CAS  PubMed  MATH  Google Scholar 

  • Zheng, M. et al. Visible-light-driven, metal-free divergent difunctionalization of alkenes using alkyl formates. ACS Catal. 11, 542–553 (2021).

    Article  MATH  Google Scholar 

  • Ha, T. M., Chatalova-Sazepin, C., Wang, Q. & Zhu, J. Copper-catalyzed formal [2+2+1] heteroannulation of alkenes, alkylnitriles, and water: method development and application to the total synthesis of (±)-sacidum lignan D. Angew. Chem. Int. Ed. 55, 9249–9252 (2016).

    Article  CAS  Google Scholar 

  • Wang, H., Gao, X., Lv, Z., Abdelilah, T. & Lei, A. Recent advances in oxidative R1-H/R2-H cross-coupling with hydrogen evolution via photo-/electrochemistry. Chem. Rev. 119, 6769–6787 (2019).

    Article  CAS  PubMed  MATH  Google Scholar 

  • Qi, M.-Y., Conte, M., Anpo, M., Tang, Z.-R. & Xu, Y.-J. Cooperative coupling of oxidative organic synthesis and hydrogen production over semiconductor-based photocatalysts. Chem. Rev. 121, 13051–13085 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Mori, S. & Saito, S. C(sp3)–H bond functionalization with styrenes via hydrogen-atom transfer to an aqueous hydroxyl radical under photocatalysis. Green Chem. 23, 3575–3580 (2021).

    Article  CAS  MATH  Google Scholar 

  • Lyu, H. et al. An Al-doped SrTiO3 photocatalyst maintaining sunlight-driven overall water splitting activity for over 1000 h of constant illumination. Chem. Sci. 10, 3196–3201 (2019).

    Article  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  • Takata, T. et al. Photocatalytic water splitting with a quantum efficiency of almost unity. Nature 581, 411–414 (2020).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  • Nishiyama, H. et al. Photocatalytic solar hydrogen production from water on a 100 m2-scale. Nature 598, 304–307 (2021).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  • Ding, C. et al. Abnormal effects of cations (Li+, Na+, and K+) on photoelectrochemical and electrocatalytic water splitting. J. Phys. Chem. B 119, 3560–3566 (2015).

    Article  CAS  PubMed  MATH  Google Scholar 

  • Chen, H. Y., Zahraa, O. & Bouchy, M. Inhibition of the adsorption and photocatalytic degradation of an organic contaminant in an aqueous suspension of TiO2 by inorganic ions. J. Photochem. Photobiol., A 108, 37–44 (1997).

    Article  CAS  Google Scholar 

  • Garwood, J. J. A., Chen, A. D. & Nagib, D. A. Radical polarity. J. Am. Chem. Soc. 146, 28034–28059 (2024).

    CAS  Google Scholar 

  • Xue, Q. et al. Metal-free, n-Bu4NI-catalyzed regioselective difunctionalization of unactivated alkenes. ACS Catal. 3, 1365–1368 (2013).

    Article  CAS  MATH  Google Scholar 

  • Prathima, P. S., Maheswari, C. U., Srinivas, K. & Rao, M. M. CuI/l-proline-catalyzed selective one-step mono-acylation of styrenes and stilbenes. Tetrahedron Lett. 51, 5771–5774 (2010).

    Article  CAS  Google Scholar 

  • Li, Y., Song, D. & Dong, V. M. Palladium-catalyzed olefin dioxygenation. J. Am. Chem. Soc. 130, 2962–2964 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Zhu, Q. & Nocera, D. G. Photocatalytic hydromethylation and hydroalkylation of olefins enabled by titanium dioxide mediated decarboxylation. J. Am. Chem. Soc. 142, 17913–17918 (2020).

    Article  CAS  PubMed  MATH  Google Scholar 

  • Schwarz, J. & König, B. Decarboxylative reactions with and without light – a comparison. Green Chem. 20, 323–361 (2018).

    Article  CAS  MATH  Google Scholar 

  • Perlmutter, J. I. et al. Repurposing the antihistamine terfenadine for antimicrobial activity against staphylococcus aureus. J. Med. Chem. 57, 8540–8562 (2014).

    Article  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  • Ha, T. M., Wang, Q. & Zhu, J. Copper-catalysed cyanoalkylative cycloetherification of alkenes to 1,3-dihydroisobenzofurans: development and application to the synthesis of citalopram. Chem. Commun. 52, 11100–11103 (2016).

    Article  CAS  Google Scholar 

  • Shirai, K. et al. Effect of water adsorption on carrier trapping dynamics at the surface of anatase TiO2 nanoparticles. Nano Lett. 16, 1323–1327 (2016).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  • Kanakaraju, D., anak Kutiang, F. D., Lim, Y. C. & Goh, P. S. Recent progress of Ag/TiO2 photocatalyst for wastewater treatment: doping, co-doping, and green materials functionalization. Appl. Mater. Today 27, 101500 (2022).

    Article  Google Scholar 

  • Cheng, Y. et al. Spatiotemporally synchronous oxygen self‐supply and reactive oxygen species production on Z‐scheme heterostructures for hypoxic tumor therapy. Adv. Mater. 32, 1908109 (2020).

    Article  CAS  Google Scholar 

  • Nosaka, Y. & Nosaka, A. Y. Generation and detection of reactive oxygen species in photocatalysis. Chem. Rev. 117, 11302–11336 (2017).

    Article  CAS  PubMed  MATH  Google Scholar 

  • Maeda, K. Z-Scheme water splitting using two different semiconductor photocatalysts. ACS Catal. 3, 1486–1503 (2013).

    Article  CAS  MATH  Google Scholar 

  • Lachheb, H. et al. Photochemical oxidation of styrene in acetonitrile solution in presence of H2O2, TiO2/H2O2 and ZnO/H2O2. J. Photochem. Photobiol. A 346, 462–469 (2017).

    Article  CAS  Google Scholar 

  • Li, X., Wang, Q., Lyu, J. & Li, X. Recent investigation on epoxidation of styrene with hydrogen peroxide by heterogeneous catalysis. ChemistrySelect 6, 9735–9768 (2021).

    Article  CAS  MATH  Google Scholar 

  • Yu, W. & Zhao, Z. Catalyst-free selective oxidation of diverse olefins to carbonyls in high yield enabled by light under mild conditions. Org. Lett. 21, 7726–7730 (2019).

    Article  CAS  PubMed  MATH  Google Scholar 

  • Matsubara, C., Kawamoto, N. & Takamura, K. Oxo[5,10,15,20-tetra(4-pyridyl)porphyrinato]titanium(IV): an ultra-high sensitivity spectrophotometric reagent for hydrogen peroxide. Analyst 117, 1781–1784 (1992).

  • 联系我们 contact @ memedata.com