Johnson, M. P. Photosynthesis. Essays in Biochemistry 60, 255–273 (2016).
Ulmer, U. et al. Fundamentals and applications of photocatalytic CO2 methanation. Nat. Commun. 10, 3169 (2019).
Kuttassery, F. et al. 1. Artificial photosynthesis sensitized by metal complexes: utilization of a ubiquitous element. Electrochemistry 82, 475–485 (2014).
Lewis, N. S. & Nocera, D. G. Powering the planet: Chemical challenges in solar energy utilization. Proc. Natl. Acad. Sci. USA. 103, 15729–15735 (2006).
Wang, Q. & Domen, K. Particulate photocatalysts for light-driven water splitting: mechanisms, challenges, and design strategies. Chem. Rev. 120, 919–985 (2020).
Yoshino, S., Takayama, T., Yamaguchi, Y., Iwase, A. & Kudo, A. CO2 Reduction using water as an electron donor over heterogeneous photocatalysts aiming at artificial photosynthesis. Acc. Chem. Res. 55, 966–977 (2022).
Anastas, P. & Eghbali, N. Green chemistry: principles and practice. Chem. Soc. Rev. 39, 301–312 (2010).
Yamauchi, M., Saito, H., Sugimoto, T., Mori, S. & Saito, S. Sustainable organic synthesis promoted on titanium dioxide using coordinated water and renewable energies/resources. Coord. Chem. Rev. 472, 214773 (2022).
Wang, H., Tian, Y.-M. & König, B. Energy- and atom-efficient chemical synthesis with endergonic photocatalysis. Nat. Rev. Chem. 6, 745–755 (2022).
Sumin, A. L. & Knowles, R. R. Organic synthesis away from equilibrium: contrathermodynamic transformations enabled by excited-state electron transfer. Acc. Chem. Res. 57, 1827–1838 (2024).
Liu, Z., Caner, J., Kudo, A., Naka, H. & Saito, S. Redox-selective generation of aldehydes and H2 from alcohols under visible light. Chem. Eur. J. 19, 9452–9456 (2013).
Masuda, Y., Ishida, N. & Murakami, M. Light-driven carboxylation of o-alkylphenyl ketones with CO2. J. Am. Chem. Soc. 137, 14063–14066 (2015).
Mifsud, M. et al. Photobiocatalytic chemistry of oxidoreductases using water as the electron donor. Nat. Commun. 5, 3145 (2014).
Guo, Y., An, W., Tian, X., Xie, L. & Ren, Y.-L. Coupling photocatalytic overall water splitting with hydrogenation of organic molecules: a strategy for using water as a hydrogen source and an electron donor to enable hydrogenation. Green Chem. 24, 9211–9219 (2022).
Yuzawa, H. et al. Reaction mechanism of aromatic ring hydroxylation by water over platinum-loaded titanium oxide photocatalyst. J. Phys. Chem. C 116, 25376–25387 (2012).
Yuzawa, H., Kumagai, J. & Yoshida, H. Reaction mechanism of aromatic ring amination of benzene and substituted benzenes by aqueous ammonia over platinum-loaded titanium oxide photocatalyst. J. Phys. Chem. C 117, 11047–11058 (2013).
Yuzawa, H. et al. Anti-Markovnikov hydration of alkenes over platinum-loaded titanium oxide photocatalyst. Catal. Sci. Technol. 3, 1739–1749 (2013).
Park, S., Jeong, J., Fujita, K., Yamamoto, A. & Yoshida, H. Anti-Markovnikov hydroamination of alkenes with aqueous ammonia by metal-loaded titanium oxide photocatalyst. J. Am. Chem. Soc. 142, 12708–12714 (2020).
Courant, T. & Masson, G. Recent progress in visible-light photoredox-catalyzed intermolecular 1,2-difunctionalization of double bonds via an ATRA-type mechanism. J. Org. Chem. 81, 6945–6952 (2016).
Lan, X.-W., Wang, N.-X. & Xing, Y. Recent advances in radical difunctionalization of simple alkenes. Eur. J. Org. Chem. 39, 5821–5851 (2017).
Bao, X., Li, J., Jiang, W. & Huo, C. Radical-mediated difunctionalization of styrenes. Synthesis 51, 4507–4530 (2019).
Sharma, S., Singh, J. & Sharma, A. Visible light assisted radical‐polar/polar‐radical crossover reactions in organic synthesis. Adv. Synth. Catal. 363, 3146–3169 (2021).
Cramer, J., Sager, C. P. & Ernst, B. Hydroxyl groups in synthetic and natural-product-derived therapeutics: a perspective on a common functional group. J. Med. Chem. 62, 8915–8930 (2019).
Speckmeier, E., Fuchs, P. J. W. & Zeitler, K. A synergistic LUMO lowering strategy using Lewis acid catalysis in water to enable photoredox catalytic, functionalizing C–C cross-coupling of styrenes. Chem. Sci. 9, 7096–7103 (2018).
Shibutani, S., Nagao, K. & Ohmiya, H. Organophotoredox-catalyzed three-component coupling of heteroatom nucleophiles, alkenes, and aliphatic redox active esters. Org. Lett. 23, 1798–1803 (2021).
Tlahuext‐Aca, A., Garza‐Sanchez, R. A. & Glorius, F. Multicomponent oxyalkylation of styrenes enabled by hydrogen‐bond‐assisted photoinduced electron transfer. Angew. Chem. Int. Ed. 56, 3708–3711 (2017).
Fumagalli, G., Boyd, S. & Greaney, M. F. Oxyarylation and aminoarylation of styrenes using photoredox catalysis. Org. Lett. 15, 4398–4401 (2013).
Altmann, L.-M., Zantop, V., Wenisch, P., Diesendorf, N. & Heinrich, M. R. Visible light promoted, catalyst‐free radical carbohydroxylation and carboetherification under mild biomimetic conditions. Chem. Eur. J. 27, 2452–2462 (2021).
de Souza, E. L. S., Wiethan, C. & Correia, C. R. D. Iron-catalyzed meerwein carbooxygenation of electron-rich olefins: studies with styrenes, vinyl pyrrolidinone, and vinyl oxazolidinone. ACS Omega 4, 18918–18929 (2019).
Kindt, S., Wicht, K. & Heinrich, M. R. Thermally induced carbohydroxylation of styrenes with aryldiazonium salts. Angew. Chem. Int. Ed. 55, 8744–8747 (2016).
Xiong, P. et al. Electrochemically enabled carbohydroxylation of alkenes with H2O and organotrifluoroborates. J. Am. Chem. Soc. 140, 16387–16391 (2018).
Dalton, T., Faber, T. & Glorius, F. C–H activation: toward sustainability and applications. ACS Cent. Sci. 7, 245–261 (2021).
Yue, M. et al. Hydrogen energy systems: a critical review of technologies, applications, trends and challenges. Renew. Sustain. Energy Rev. 146, 111180 (2021).
Yang, W.-C. et al. Vanadyl species-catalyzed complementary β-oxidative carbonylation of styrene derivatives with aldehydes. Org. Biomol. Chem. 13, 2385–2392 (2015).
Zheng, M. et al. Visible-light-driven, metal-free divergent difunctionalization of alkenes using alkyl formates. ACS Catal. 11, 542–553 (2021).
Ha, T. M., Chatalova-Sazepin, C., Wang, Q. & Zhu, J. Copper-catalyzed formal [2+2+1] heteroannulation of alkenes, alkylnitriles, and water: method development and application to the total synthesis of (±)-sacidum lignan D. Angew. Chem. Int. Ed. 55, 9249–9252 (2016).
Wang, H., Gao, X., Lv, Z., Abdelilah, T. & Lei, A. Recent advances in oxidative R1-H/R2-H cross-coupling with hydrogen evolution via photo-/electrochemistry. Chem. Rev. 119, 6769–6787 (2019).
Qi, M.-Y., Conte, M., Anpo, M., Tang, Z.-R. & Xu, Y.-J. Cooperative coupling of oxidative organic synthesis and hydrogen production over semiconductor-based photocatalysts. Chem. Rev. 121, 13051–13085 (2021).
Mori, S. & Saito, S. C(sp3)–H bond functionalization with styrenes via hydrogen-atom transfer to an aqueous hydroxyl radical under photocatalysis. Green Chem. 23, 3575–3580 (2021).
Lyu, H. et al. An Al-doped SrTiO3 photocatalyst maintaining sunlight-driven overall water splitting activity for over 1000 h of constant illumination. Chem. Sci. 10, 3196–3201 (2019).
Takata, T. et al. Photocatalytic water splitting with a quantum efficiency of almost unity. Nature 581, 411–414 (2020).
Nishiyama, H. et al. Photocatalytic solar hydrogen production from water on a 100 m2-scale. Nature 598, 304–307 (2021).
Ding, C. et al. Abnormal effects of cations (Li+, Na+, and K+) on photoelectrochemical and electrocatalytic water splitting. J. Phys. Chem. B 119, 3560–3566 (2015).
Chen, H. Y., Zahraa, O. & Bouchy, M. Inhibition of the adsorption and photocatalytic degradation of an organic contaminant in an aqueous suspension of TiO2 by inorganic ions. J. Photochem. Photobiol., A 108, 37–44 (1997).
Garwood, J. J. A., Chen, A. D. & Nagib, D. A. Radical polarity. J. Am. Chem. Soc. 146, 28034–28059 (2024).
Xue, Q. et al. Metal-free, n-Bu4NI-catalyzed regioselective difunctionalization of unactivated alkenes. ACS Catal. 3, 1365–1368 (2013).
Prathima, P. S., Maheswari, C. U., Srinivas, K. & Rao, M. M. CuI/l-proline-catalyzed selective one-step mono-acylation of styrenes and stilbenes. Tetrahedron Lett. 51, 5771–5774 (2010).
Li, Y., Song, D. & Dong, V. M. Palladium-catalyzed olefin dioxygenation. J. Am. Chem. Soc. 130, 2962–2964 (2008).
Zhu, Q. & Nocera, D. G. Photocatalytic hydromethylation and hydroalkylation of olefins enabled by titanium dioxide mediated decarboxylation. J. Am. Chem. Soc. 142, 17913–17918 (2020).
Schwarz, J. & König, B. Decarboxylative reactions with and without light – a comparison. Green Chem. 20, 323–361 (2018).
Perlmutter, J. I. et al. Repurposing the antihistamine terfenadine for antimicrobial activity against staphylococcus aureus. J. Med. Chem. 57, 8540–8562 (2014).
Ha, T. M., Wang, Q. & Zhu, J. Copper-catalysed cyanoalkylative cycloetherification of alkenes to 1,3-dihydroisobenzofurans: development and application to the synthesis of citalopram. Chem. Commun. 52, 11100–11103 (2016).
Shirai, K. et al. Effect of water adsorption on carrier trapping dynamics at the surface of anatase TiO2 nanoparticles. Nano Lett. 16, 1323–1327 (2016).
Kanakaraju, D., anak Kutiang, F. D., Lim, Y. C. & Goh, P. S. Recent progress of Ag/TiO2 photocatalyst for wastewater treatment: doping, co-doping, and green materials functionalization. Appl. Mater. Today 27, 101500 (2022).
Cheng, Y. et al. Spatiotemporally synchronous oxygen self‐supply and reactive oxygen species production on Z‐scheme heterostructures for hypoxic tumor therapy. Adv. Mater. 32, 1908109 (2020).
Nosaka, Y. & Nosaka, A. Y. Generation and detection of reactive oxygen species in photocatalysis. Chem. Rev. 117, 11302–11336 (2017).
Maeda, K. Z-Scheme water splitting using two different semiconductor photocatalysts. ACS Catal. 3, 1486–1503 (2013).
Lachheb, H. et al. Photochemical oxidation of styrene in acetonitrile solution in presence of H2O2, TiO2/H2O2 and ZnO/H2O2. J. Photochem. Photobiol. A 346, 462–469 (2017).
Li, X., Wang, Q., Lyu, J. & Li, X. Recent investigation on epoxidation of styrene with hydrogen peroxide by heterogeneous catalysis. ChemistrySelect 6, 9735–9768 (2021).
Yu, W. & Zhao, Z. Catalyst-free selective oxidation of diverse olefins to carbonyls in high yield enabled by light under mild conditions. Org. Lett. 21, 7726–7730 (2019).
Matsubara, C., Kawamoto, N. & Takamura, K. Oxo[5,10,15,20-tetra(4-pyridyl)porphyrinato]titanium(IV): an ultra-high sensitivity spectrophotometric reagent for hydrogen peroxide. Analyst 117, 1781–1784 (1992).