65% 的 Hacker News 帖子带有负面情绪,但表现更好。
65% of Hacker News posts have negative sentiment, and they outperform

原始链接: https://philippdubach.com/standalone/hn-sentiment/

一项近期研究分析了32,000篇Hacker News帖子和340,000条评论,揭示了一个令人惊讶的趋势:**带有负面情绪的帖子获得的平均积分比整体平均积分高27%(平均为35.6,而整体平均值为28分)。** 即使使用六种不同的情绪分析模型——从基于Transformer的分类器到大型语言模型——也证实了这一点,表明该平台奖励负面情绪。 研究中识别的“负面情绪”包括对技术和行业实践的建设性批评,*而非*人身攻击。 虽然该研究并未明确证明因果关系,但它表明负面表达与更高的参与度之间存在关联,可能正因为争议而吸引注意力。 完整的研究、代码、数据集和仪表板即将发布,将提供对HN注意力动态的进一步见解。 预印本目前可在SSRN上获取。

## 黑客新闻情绪与互动总结 一篇最近在黑客新闻(HN)上的帖子分析了平台帖子的情绪,发现 **65% 表现出负面情绪**,但仍然优于其他内容。 这引发了用户关于 HN 和在线平台普遍存在的负面情绪的本质的讨论。 许多评论者呼应了这样的观点:**负面或批判性反馈比积极肯定更具吸引力**,理由包括人类倾向于关注潜在问题(负面偏见)以及不同意见的互动性。 几位用户指出,HN 上常见的建设性批评与别处发现的有害负面情绪不同。 另一些人注意到,**简短、尖刻的负面评论比条理清晰、更长的帖子更能引起关注**。 一些人认为这是因为抱怨比提供积极贡献更容易。 也有人对潜在的隐性毒性和政治讨论的影响表示担忧。 原始帖子的作者承认了这些发现,并分享了他们的数据收集方法,承诺发布更详细的论文和数据集。 总而言之,这场讨论凸显了负面情绪、互动以及黑客新闻独特文化之间复杂的联系。
相关文章

原文

Posts with negative sentiment average 35.6 points on Hacker News. The overall average is 28 points. That’s a 27% performance premium for negativity. Distribution of sentiment scores across 32,000 Hacker News posts Distribution of sentiment scores across 32,000 Hacker News posts This finding comes from an empirical study I’ve been running on HN attention dynamics, covering decay curves, preferential attachment, survival probability, and early-engagement prediction. The preprint is available on SSRN. I already had a gut feeling. Across 32,000 posts and 340,000 comments, nearly 65% register as negative. This might be a feature of my classifier being miscalibrated toward negativity; yet the pattern holds across six different models. Sentiment distribution comparison across DistilBERT, BERT Multi, RoBERTa, Llama 3.1 8B, Mistral 3.1 24B, and Gemma 3 12B Sentiment distribution comparison across DistilBERT, BERT Multi, RoBERTa, Llama 3.1 8B, Mistral 3.1 24B, and Gemma 3 12B I tested three transformer-based classifiers (DistilBERT, BERT Multi, RoBERTa) and three LLMs (Llama 3.1 8B, Mistral 3.1 24B, Gemma 3 12B). The distributions vary, but the negative skew persists across all of them (inverted scale for 2-6). The results I use in my dashboard are from DistilBERT because it runs efficiently in my Cloudflare-based pipeline.

What counts as “negative” here? Criticism of technology, skepticism toward announcements, complaints about industry practices, frustration with APIs. The usual. It’s worth noting that technical critique reads differently than personal attacks; most HN negativity is substantive rather than toxic. But, does negativity cause engagement, or does controversial content attract both negative framing and attention? Probably some of both.

I’ll publish the full code, dataset, and a dashboard for the HN archiver soon and I’m happy to send you an update:

Alternatively, you can also subscribe to the RSS feed or get updates on Bluesky.

联系我们 contact @ memedata.com